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Abstract

ReductiveG-structures on a principal bund{@ are considered. It is shown that these structures,
i.e. reductiveG-subbundles of Q, admit a canonical decomposition of the pull-back vector bundle
iH(TQ) = P x o TQover P. For classicalG-structures, i.e. reductive-subbundles of the linear
frame bundle, such a decomposition defines an infinitesimal canonical lift. This lift extends to a
prolongationl”-structure onP. In this general geometric framework the theory of Lie derivatives
is considered. Particular emphasis is given to the morphisms which must be taken in order to state
what kind of Lie derivative has to be chosen. On specializing the general theory of gauge-natural
Lie derivatives of spinor fields to the case of the Kosmann lift, we recover the result originally
found by Kosmann. We also show that in the case of a reduGtiggructure one can introduce a
“reductive Lie derivative” with respect to a certain class of generalized infinitesimal automorphisms.
This differs, in general, from the gauge-natural one, and we conclude by showing that the “metric
Lie derivative” introduced by Bourguignon and Gauduchon is in fact a particular kind of reductive
rather than gauge-natural Lie derivative.
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1. Introduction

It has now become apparent that there has been some confusion regarding the concept of
a Lie derivative of spinor fields, both in the mathematical and the physical literature.
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Lichnerowicz was the first one to give a correct definition for such an object, although
with respect to infinitesimal isometries only. The local expression given by Lichnerowicz
in 1963[24] is

£V 1= EVay — SVuEY Y, (*)

whereV,&, = V[.&, as is assumed to be a Killing vector field.

After a first attempt to extend Lichnerowicz’s definition to generic infinitesimal transfor-
mations[21], in 1972 Kosmann put forward a new definition of a Lie derivative of spinor
fields in[22], her doctoral thesis under Lichnerowicz’s supervision. Indeed, in her previous
work she had just extendadut courtLichnerowicz’s definition to the case of a generic
vector fields, without antisymmetrizing/,&,,. Therefore, the local expression appearing in
[21] could not be given any clear-cut geometrical meaning. The remedy was then realized to
be retaining Lichnerowicz’s local expressi6t) for agenericvector fieldg, but explicitly
taking the antisymmetric part 6f,&, only [22].

Several papers on the subject followed, including particularly Binz and Pfersidjy’s
and Bourguignon and Gauduchof®§. Furthermore, among the physics community much
interest has been attracted by Penrose and Rindler’s defifi@@ndespite its being re-
stricted to infinitesimal conformal isometries because of the (implicit) requirement that the
Lie derivative commute with the isomorphism between the complexified tangent bundle and
the tensor product of the spinor bundle and its complex conjugatdXsé@r a thorough
discussion).

In this paper we investigate whether the definition of a Lie derivative of spinor fields
can be placed in the more general framework of the theory of Lie derivatives of sections
of fibred manifolds (and, more generally, of differentiable maps between two manifolds)
stemming from Trautman’s 1972 seminal paf#t] and further developed by JanySka and
Kolar [16] (see alsg20]).

A first step in this direction was already taken M, where Kosmann’s 1972 definition
was successfully placed in the framework of the theory of Lie derivatives of sections of
gauge-natural bundleby introducing a hew geometric concept, which the authors called
the “Kosmann lift”.

The aim of this paper is to provide a more transparent geometric explanation of the
Kosmann lift and, at the same time, a generalization to reduGtigéructures. Indeed, the
Kosmann lift is but garticular caseof this interesting generalization.

The structure of the paper is as follows:$ection 2preliminary notions on principal
bundles are recalled for the main purpose of fixing our notatio&eiction 3the concept
of a reductiveG-structure and its main properties are introduced@ation 4a construc-
tive approach to gauge-natural bundles is proposed together with a number of relevant
examples; irSection 4split structures on principal bundles are considered and the notion
of a generalized Kosmann lift is defined; finally, 8ection 6the general theory of Lie
derivatives is applied to the context of reductiestructures, allowing us to analyse the
concept of the Lie derivative of spinor fields in all its different flavours from the most
general point of view. The proofs of the results presented in this paper mainly consist of
the careful application of the definitions which precede them, and therefore are mostly
omitted.
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2. Notation

Let M be a manifold and5 a Lie group. Aprincipal (fibre) bundle P over M with
structure groupG is obtained by attaching a copy 6f to each point ofM, i.e. by giv-
ing a G-manifold P, on which G acts on the right and which satisfies the following
conditions:

1. The (right) actionr : P x G — PofGonPisfregie.u-a:=r(u,a) =u,u € P,
impliesa = e, e being the unit element af.

2. M = P/G is the quotient space dt by the equivalence relation induced 6y i.e. M
is the space of orbits. Moreover, the canonical projection? — M is smooth.

3. P is locally trivial, i.e. P is locally a productU x G, whereU is an open set /.
More precisely, there exists a diffeomorphigm 7~1(U) — U x G such that(u) =
(m(u), f(u)), where the mapping : #~1(U) — G is G-equivariant i.e. f(u - a) =
fw) -aforallu e n=X(U),a € G.

A principal bundle will be denoted byP, M, =; G), P(M, G), = : P — M or simply P,
according to the particular context.is called thebundle(or total) space M thebase G
the structure groupandx the projection The closed submanifold—1(x), x € M, will be
called thefibre overx. For any pointt € P, we haver—1(x) = u - G, wheren(u) = x,
andu - G will be called thefibre throughu. Every fibre is diffeomorphic t@, but such a
diffeomorphism depends on the chosen trivialization.

Given a manifoldM and a Lie groupG, the product manifold x G is a principal
bundle overM with projection p; : M x G — M and structure group, the action
being given by(x,a) - b = (x,a - b). The manifoldM x G is called atrivial principal
bundle

A homomorphisrof a principal bundle?’ (M’, G’) into another principal bundlB(M, G)
consists of a differentiable mappidyg: P” — P and a Lie group homomorphisf: G’ —
G suchtha®(u’ - ') = ®') - f(a') forallu’ € P',d’ € G'. Hence,® maps fibres into
fibres and induces a differentiable mapping M’ — M by ¢(x") = 7(®W')), u’ being
an arbitrary point over’. A homomorphism® : P’ — P is called anembeddingf
¢ : M — M isanembedding anfl : G’ — G isinjective. In such a case, we can identify
P’ with &(P"), G’ with f(G") andM’ with ¢(M"), and P’ is said to be aubbundleof P. If
M’ = M andg = idy, P’ is called areduced subbundler areductionof P, and we also
say thatG “reduces” to the subgrou@’.

A homomorphismp : P’ — P is called ansomorphisnif there exists a homomorphism
of principal bundlegV : P — P’ suchthaw o ® = idp and® o ¥ = idp.

3. Reductive G-structuresand their prolongations

Definition 3.1. Let H be a Lie group and; a Lie subgroup ofd. Denote byh the Lie
algebra ofH and byg the Lie algebra o&;. We shall say thaf is areductive Lie subgroup
of H if there exists a direct sum decomposition

h=gdm,
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wherem is an Ad;-invariant vector subspace bfi.e. Ad,(m) C m for all a € G (which
means that the Agl representation ofs in b is reducible into a direct sum decomposition
of two Adg-invariant vector spaces; df.8, p. 83).

Remark 3.2. A Lie algebrah and a Lie subalgebrg satisfying these properties form a
so-calledeductive pair(cf. [4, p. 103). Moreover, Ag; (m) C m implies [g, m] C m, and,
conversely, ifG is connected,d, m] C m implies Adg(m) C m [19, p. 190]

Example 3.3. Consider a subgrour ¢ H and suppose that an gdinvariant metric
K can be assigned on the Lie algelyrde.g. if H is a semisimple Lie groupk could
be the Cartan—Killing form: indeed, this form is genvariant and, in particular, also
Adg-invariant). Set

mi=g-={vehK@v,u)=0 Vuecg.

Obviously,h can be decomposed as the direct dum g & m and it is easy to show that,
under the assumption of Adinvariance ofK, the vector subspaaeis also Ag;-invariant.

Example 3.4 (The unimodular group). The unimodular group(&L.RR) is an example of
a reductive Lie subgroup of Glz, R). To see this, first recall that its Lie algehilam, R)
is formed by allm x m traceless matrices. M is any matrix ingl(m, R), the following
decomposition holds:

1
M=U+ —tr(M)l,
m
wherel := idg,, r) andU is traceless. Indeed,

tr(U) =tr(M) — itr(M)tr(I) =0.
m
Accordingly, the Lie algebrgl(m, R) can be decomposed as follows:
gl(m, R) = sl(m, R) ® RI.

In this casem is the set of all real multiples ¢f which is obviously adjoint-invariant under
SL(m, R). Indeed, ifS is an arbitrary element of Sz, R), for anya € R one has

Ads(al) =SSt = alSS™ = al.

This proves thaRl is adjoint-invariant under Slzz, R), and Sl(m, R) is a reductive Lie
subgroup of Glun, R).

Given the importance of the following example for the future developments of the theory,
we shall state it as a proposition.

Proposition 3.5. The(pseude) orthogonal group5Q(p, q), p + g = m, is a reductive Lie
subgroup ofGL (m, R).
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Proof. Letn denote the standard metric of signatUpeq), with p+g = m, onR™ = R?4

andM be any matrix irgl(m, R). Denote byM " the adjoint (transpose) ™ with respect to

n, defined by requiring(M v, v') = (v, Mv') for all v, v € R™. Of course, any traceless
matrix can be (uniquely) written as the sum of an antisymmetric matrix and a symmetric
traceless matrix. Therefore

sl(m,R) = so(p,q) ®V,

so(p, q) denoting the Lie algebra of the (pseudo-) orthogonal grou@Sé for n, formed
by all matricesA in gl(m, R) such thatAT = —A, andV the vector space of all matrices
V in sl(m, R) such thatv" = V. Now, letO be any element of S@, g) and setV’ :=
AdoV = OVO~ ! for anyV € V. We have

V/T — (OVOT)T =V
becaus&/T =V andO~1 = OT. Moreover,
tr(V') = tr(O) tr(V) tr(0~1) = 0

sinceV istraceless. S§/ isin'V, thereby proving tha¥ is adjoint-invariantunder S@, ¢).
Therefore, SQp, ¢) is a reductive Lie subgroup of $kz, R) and, hence, also a reductive
Lie subgroup of Glun, R) by virtue of Example 3.4 O

Definition 3.6. A reductive G-structuren a principal bundle€ (M, H) is a principal sub-
bundleP(M, G) of Q(M, H) such thaiG is a reductive Lie subgroup @f.

Now, since later on we shall consider the case of spinor fields, it is convenient to give the
following general definition.

Definition 3.7. Let P(M, G) be aprincipalbundleand: I" — G acentralhomomorphism
of a Lie group/” onto G, i.e. such that its kernel is discrete and contained in the centre of
I’ [14] (see alsd15]). A I'-structureon P(M, G) is a principal bundle map : P — P
which is equivariant under the right actions of the structure groups, i.e.

¢ - o) = g(u) - p()

forallii € Panda € I

Equivalently, we have the following commutative diagrams:

¢

S L
M — M P —— P-

idm et

r¢ andi® denoting the right multiplication o® and P, respectively (sef8]). This means
that, forii € P, bothii andz(ii) lie over the same point, and restricted to any fibre, is a
“copy” of p, i.e. itis equivalent to it. The existence condition faFsstructure onP can be
formulated in terms o€ech cohomologyl5,14,23]



M. Godina, P. Matteucci/Journal of Geometry and Physics 47 (2003) 66—-86 71

Remark 3.8. The bundle mag : P — P is a covering space since its kernel is discrete.

Recall now that for any principal bund(&, M, =, G) a (principal) automorphisnof P
is a diffeomorphisn® : P — P suchthatb(u-a) = & (u)-aforeveryu € P,a € G. Each
@ induces a unique diffeomorphisgn: M — M such thatr o @ = ¢ o . Accordingly,
we shall denote by AgP) the group of all principal automorphisms 8f Assume that a
vector fieldZ on P generates a local 1-parameter grqdp}. Then, = is G-invariant if
and only if®, is an automorphism aP for everyr € R. Accordingly, we denote b¥ ¢ (P)
the Lie algebra of-invariant vector fields orP.

Now recall that, given a fibred manifotd: B — M, aprojectable vector fieldn B over
a vector fieldt on M is a vector field= on B such thaf’r o £ = £ o . Then, the following
proposition is evident.

Proposition 3.9. Let P(M, G) be a principal bundle. Thervery G-invariant vector field
Z on P is projectable over a unique vector figldn the base manifold M

Proposition 3.10. Letz : P — P be alI'-structure onP(M, G). Then everyG-invariant
vector field= on P admits a uniquél"-invariant) lift = onto P.

Proof. Consider & -invariant vector field, its flow being denoted by, }. Foreach € R,

@, is an automorphism of. Moreover,; : P — P being a covering space, it is possible
to lift &, to a (unique) bundle mag, : P — P in the following way. For any poini € P,
consider the (unique) poigtiz) = u. From the theory of covering spaces it follows that, for
the curvey, : R — P based at, that isy, (0) = u, and defined by, (r) := &;(u), there
exists a unique curvg; : R — P based afi such that o Ya = yu. Itis possible to define a
principal bundle mag@, : P — P  covering®; by settlngqb,(u) = 7; (). The 1-parameter
group of automorphismgp,} of P defines a vector fiel& (i) := 8/3t[®;(i1)]|;~o for all
ueP. O

Proposition~3.11.~ Lets : P — P be al'-structure onP(M, G). Then everyG-invariant
vector fieldZ on P is projectable over a unique G-invariant vector fietdon P.

Proof. Consider & -invariant vector fieldz on P. Denote its flow by @;}. Eachd, induces
a unique automorphism, : P — P such that o ®;, = &, o ¢ and, hence, a unique vector
field Z on P given by Z(u) := 9/0t[®;(u)]|;=0 for all u € P. O

Corollary 3.12. Letz : P — P be al'-structure onP(M, G). There is a bijection between
G-invariant vector fields on P anfi-invariant vector fields orP.
4. Gauge-natural bundles

In this section we shall introduce the category of gauge-natural bufg&3 and give

a number of relevant examples. Geometrically, gauge-natural bundles possess a very rich
structure, which generalizes the classical one of natural bundles. From the physical point



72 M. Godina, P. Matteucci/Journal of Geometry and Physics 47 (2003) 66—-86

of view, this framework enables one to treat at the same time, under a unifying formalism,
natural field theories such as general relativity, gauge theories, as well as bosonic and
fermionic matter field theories (cf8,9,12,25].

Definition 4.1. Let jf,f denote thefth order jet prolongation of a map evaluated at a
point p. The set

{jbalo: R™ — R™, «(0) = 0, locally invertiblg

equipped with the jet compositioffe o jE’ == j{(a o &) is a Lie group called théth
differential groupand denoted bﬁfn.

Fork = 1 we have, of course, the identificatid;ri;q = GL(m, R).

Definition 4.2. Let M be anm-dimensional manifold. The principal bundle ovérwith
groupG¥ is called thekth order frame bundlever M and will be denoted by.* M.

Fork = 1 we have, of course, the identificatidgd M = LM, whereLM is the usual
(principal) bundle of linear framesver M (cf. e.g.[18]).

Definition 4.3. Let G be a Lie group. Then, thepace ofim, h)-velocitiesof G is defined
as

ThG := (jlala : R™ — G).

Thus, T G denotes the set di-jets with source at the origin @ R™ and target inG.
It is a subset of the manifold” (R™, G) of r-jets with source ifR” and target inG. The
setJ"(R™, G) is a fibre bundle oveR™ with respect to the canonical jet projection of
JH@®R™, G) onR™, andT! G is its fibre over Oc R”. Moreover, the sef’’ G can be given
the structure of a Lie group. Indeed, BtT" € T G be any elements. We define a (smooth)
multiplication inT* G by

Thi:ThG x TG — TG, Thuw:(S=jha,T=jib)r> S -T:=jla b,
where(a - b)(x) := a(x) - b(x) = u(a(x), b(x)) is the group multiplication inG. The
mapping(S, T) — S - T is associative; moreover, the elemggﬁ, e denoting both the unit
element inG and the constant mapping froR" to e, is the unit element of’G, and
jha~t, wherea=1(x) := (a(x))~! (the inversion being taken in the grody), is the inverse
of jga.

Definition 4.4. Consider a principal bundlB(M, G). Letk andh be two natural numbers
such thak > h. Then, by thek, h)-principal prolongationof P we shall mean the bundle

WP = LKM % J" P, (4.1)
whereL* M is thekth order frame bundle aff and J” P the hth order jet prolongation of

P. A point of Wh" P is of the form(jge. jio), wheree : R™ — M is locally invertible and
such that(0) = x, ando : M — P is a local section around the point M.



M. Godina, P. Matteucci/Journal of Geometry and Physics 47 (2003) 66—-86 73

Unlike J" P, Wk P is a principal bundle ovel whose structure group is
WkiG = Gk x ThG.
WkhG is called the(m; k, h)-principal prolongationof G. The group multiplication on
WK G is defined by the following rule:
(oo jg@) © (6B joh) = (jp(a o B), jg((ao B) - b)),
*" denoting the group multiplication iiG. The right action ofW%"G on W*" P is then
defined by
(joe: J1o) © (joo, jga) = (jgle o @), ji(o - (aca toeh)),

‘.” denoting now the canonical right action 6fon P.

Definition 4.5. Let® : P — P be an automorphism over a diffeomorphigmM — M.
We define arautomorphism of¥*” P associated witkd by

whkhe . wkhpwkhp wkhe : (e, jlo) > (j@oe), 1 (@ooog™)).
(4.2)

Proposition 4.6. The bundle morphisiv*" ® preserves the right actiothereby being a
principal automorphism

By virtue of (4.1) and (4.2W*" turns out to be a functor from the category of principal
G-bundles over-dimensional manifolds and local isomorphisms to the category of prin-
cipal Wk G-bundleg[20]. Now, let P, := W*" P x; F be a fibre bundle associated with
P(M, G) via an actiork of W,’j;h G on amanifoldF. There exists canonical representation of
the automorphisms d@# induced by(4.2). Indeed, if¢ : P — P is an automorphism over a
diffeomorphismp : M — M, then we can define the correspondimguced automorphism
&, as

Oy P P, @y u, e (W), £, (4.3)

which is well defined since it turns out to be independent of the representatiye,, u €
P, f € F. This construction yields a functey from the category of principal-bundles
to the category of fibred manifolds and fibre-respecting mappings.

Definition 4.7. A gauge-natural bundle of orddik, #) over M associated witlP(M, G)
is any such functor.

If we now restrict attention to the cage= {e¢} andh = 0, we can recover the classical
notion of natural bundles oved. In particular, we have the following definition.

Definition 4.8. Lety : M — M be a diffeomorphism. We define an automorphism of
L*M associated witkp, called itsnatural lift, by

LYo : L*M — L*Mm, Lrg: jEers jh(poe).
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Then, L* turns out to be a functor from the categorymfdimensional manifolds and
local diffeomorphisms to the category of princig),-bundles. Now, given any fibre bundle
associated witli.k M and any diffeomorphism o, we can define a corresponding induced
automorphism in the usual fashion. This construction yields a functor from the category of
m-dimensional manifolds to the category of fibred manifolds.

Definition 4.9. A natural bundle of order lover M is any such functor.
We shall now give some important examples of (gauge-) natural bundles.

Example 4.10 (Bundle of tensor densities). A first fundamental example of a natural bun-
dle is given, of course, by the bund®l7 M of tensor densities of weight over an
m-dimensional manifold. Indeed,” T/ M is a vector bundle associated with M via

the following left action ofG2, = W19(e} on the vector spacg (R™):

A GL < TTR™) — TI(R™),
iy ~

. J /p1...p pP1 prki.. l]_ oAl —w
A (ak, 1) e o e ey aqss(deta) ,

the tilde over a symbol denoting matrix inversion. Ror= 0 we recover the bundle

of tensor fields oveM. This is a definition of*7; M which is appropriate for physical
applications, where one usually considerdy those (active) transformations of tensor
fields that arenaturally induced by some transformations on the base manifold. Somewhat
more unconventionally, though, we can reg&/ M as agaugenatural vector bundle
associated with®9(LM). Of course, the two bundles under consideration are the aame
objects but theirmorphismsare different.

Example 4.11 (Bundle of G-invariant vector fields). LeY := R™ @ g, g denoting the Lie
algebra ofG, and consider the following action:

MIWRIGx V=V A ((al.al ), (v, 0P) b (@], AD@) 7 + alv)),
(4.4)

where(a?, aj) denote natural coordinates @1} G: a generic elemenféf € TLG is rep-
resented byr = f(0) € G, i.e.a? = f9(0), anda; = (a,(a—lf(x))|;:0. Obviously,
WLlp x; V= TP/G, its sections thus representigginvariant vector fields orP.

Example 4.12 (Bundle of verticalG-invariant vector fields). Takg as the standard fibre
and consider the following action:

AWEHG xg—> g A ((ef.a.d), v") = AD(@0. (4.5)

It is easy to realize thaWl1P x; g = VP/G = (P x g)/G, the bundle of vertical
G-invariant vector fields onP. Of course, in this example, we see thats already a
G-manifold and s@P x g)/ G is a gauge-natural bundle of ord€ 0), i.e. a vector bundle
associated witw?9pP = P. In other words, giving actiofé.5) amounts to regarding the
original G-manifold g as aW,};lG—manifold via the canonical projection of Lie groups
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WilG — G. Itis also meaningful to think of actio#.5) as setting’ = 0 in (4.4), and
hence one sees that the first jet contribution,aife.disappears.

5. Split structureson principal bundles

It is known that, given a principal bundi®& M, G), aprincipal connectioron P may be
viewed as a fibr&-equivariant projectiow® : TP — VP, i.e. as a 1-form im21(P, TP) such
that® o ® = @ andim® = VP. Here, ‘G-equivariant” means thdr? o ® = ® o Tr* for all
a € G. Then,HP := ker @ is a constant-rank vector subbundlI€léf, called thenorizontal
bundle We have a decompositiofP = HP & VP andT,P = H,P @ V, P forallu € P.

The projectiond is called thevertical projectionand the projectiory := idtp — &, which
is alsoG-equivariant and satisfieso x = x and imy = ker@, is called thehorizontal
projection

This is, of course, a well-known example of a “split structure” on a principal bundle. We
shall now give the following general definition, due—for pseudo-Riemannian manifolds—
to a number of author8,10,13,28,29hnd more generally to Gladush and Konop]ly4].

Definition 5.1. An r-split structureon a principal bundle’(M, G) is a system of- fibre
G-equivariant linear operatot®’ € 21(P, TP)},i = 1, 2, ..., r, of constant rank with the
properties:

,
@ dl =5l > o =idre. (5.1)
i=1

We introduce the notations:

Yo=im® ,  n=dmx, (5.2)
where ima;, is the image of the operatdr' at a pointu of P,i.e. Xi, = {v € T, P|®}, ov =
v}. Owing to the constancy of the rank of the operatdrg, the number$n;} do not depend

on the pointu of P. It follows from the very definition of am-split structure that we have
a G-equivariant decomposition of the tangent space:

r r
,P=@=z,. dmT,P=> n.
i=1 i=1
Obviously, the bundl@P is also decomposed intovector subbundlegX’} so that

,
P=FPs. =]z (5.3)
i=1

ueP

Remark 5.2. In general, the: vector subbundle§~’ — P} areanholonomigi.e. non-
integrable, and are not vector subbundle¥Bf For a principal connection, i.e. for the case
TP = HP @ VP, the subbundI&P is integrable.
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Proposition 5.3. An equivariant decomposition of TP into r vector subbundle§ as
given by(4.3), with T,,r*(X}) = X! ,, induces a system of r fibre G-equivariant linear

operators{®' € (P, TP)} of constant-rank satisfying properti€s.1) and (5.2)

Proposition 5.4. Given an r-split structure on a principal bundlB(M, G), every G-
invariant vector field=Z on P splits into r invariant vector field$Z;} such thatZ =
E1®---dEandE;(u) e X' forallu e Pandi =1,2,...,r.

Remark 5.5. The vector field§&;} are compatible with th¢x’}, i.e. they are sections
{E; . P — X'} of the vector bundle§X’ — Pj}.

Corollary5.6. Let P(M, G) be areductive G-structure on a principal bundM, H) and
letip : P — Q be the canonical embedding. Thamy given r-split structure o® (M, H)
induces an r-split structure restricted tB(M, G), i.e. an equivariant decomposition of
iH(TQ =P xoTQ={(u,v) € PxTQlip(u) = to(v)} such that’,(TQ) = i’;,(Z‘l) @
---@ip(X"), and anyH-invariant vector field= on Q restricted to P splits into r G-invariant
sections of the pull-back bundIg$ (X') = Pxp X'},i.e. 8 = E1®---® 5, With &;(u) €
Xiforallu e Pandie {1,2,...,r}.

Remark 5.7. Note that the pull-backj, is anatural operationi.e. it respects the splitting
ip(TQ = i’;,(Zl) ® .- ®ip(X"). In other words, the pull-back of a splitting f@ is a
splitting of the pull-backs foP. Furthermore, although the vector field% } areG-invariant
sections of their respective pull-back bundles, they Hrmvariant if regarded as vector
fields on the corresponding subsetghf

In Section 4we saw thatW*” P is a principal bundle oveM. Consider in particular
wLlp, the(1, 1)-principal prolongation oP. The fibred manifoldv 1P — M coincides
with the fibred producW 1P := LM x,; J* P over M. We have two canonical principal
bundle morphisms pr: WtipP — LM and py : WP — P. In particular, ps :
witlp — Pis aGl x g ® R"-principal bundle,GL x g ® R being the kernel of
WLG — G. The following lemma recognizes : TP — P as a vector bundle associated
with the principal bundlegvt1p — P.

Lemma 5.8. The vector bundlep : TP — P coincides with the vector bundie-1p :=
(WP xV)/(GL x g®@R™) over P whereV := R” @ g is the leftGL, x g ® R™-manifold
with action given by

T: G%l NgRR" xV -V, T ((a,{, e, a), ', vP)) > (a;vj, vP + a;-"vi).
(5.4)

Remark 5.9. The vector bundlep : TP — P is a gauge-natural bundle of ordg, 0)
associated with the&, x g ® R™-principal bundle ps : WP — P.

Lemma5.10. VP — P is a trivial vector bundle associated with>1p — P.
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Lemmab5.11. Let P(M, G) be a reductive G-structure on a principal bunddM, H) and
ip . P — Q the canonical embedding. Theii(TQ) = P xo TQ is a vector bundle over
P associated witi11p — P.

From the above lemmas it follows that another important example of a split structure on
a principal bundle is given by the following theorem.

Theorem5.12. Let P(M, G) be areductive G-structure on a principal bunddM, H) and
letip : P — Q be the canonical embedding. Thémere exists a canonical decomposition
of i%(TQ) — P such that

ip(TQ) =TP® M(P),
i.e. at eachu € P one has
TuQ = TuPGaMu’

M, being the fibre over u of the subbundid(P) — P of i},(VQ) — P. The bundle
M(P) is defined asVI(P) := (WH1P x m)/(GL x g ® R™), wherem is the(trivial left)
GL x g ® R™-manifold

Remark 5.13. The trivial Gil x g ® R™-manifold m corresponds to the actiq@.5) of
Example 4.12vith W11G restricted oG} x g ® R™, andg restricted tom. Of course,
since the grougGl x g ® R” acts trivially onm, it follows that M(P) is trivial, i.e.
isomorphic toP x m, becausV>1P/(GL x g @ R") = P.

From the above theorem two corollaries follow, which are of prime importance for the
concepts of a Lie derivative we shall introduce in the next section.

Corollary 5.14. Let P(M, G) and Q(M, H) be as in the previous theorem. The restriction
Z|p of an H-invariant vector field= on Q to P splits into a G-invariant vector fielf@k

on P, called thegeneralized Kosmann vector field associated \f@tland a “transverse”
vector field=Zg, called thegeneralized von Gdden vector field associated &ith

Corollary 5.15. Let P(M, G) be a classical G-structurd.e. a reductive G-structure on
the bundle LM of linear frames over M. The restrictibf| p to P — M of the natural lift
L& onto LM of a vector field on M splits into a G-invariant vector field on P called the
generalized Kosmann lift of and denoted simply b§k, and a “transverse” vector field
called thevon Goden lift of¢ and denoted byc.

Remark 5.16. The last corollary still holds if, instead &M, one considers thith order
frame bundle.* M and hence a classiogtstructure of ordet, i.e. a reductives-subbundle
P of L*M. Note also that the Kosmann lift— & is nota Lie algebra homomorphism,
althoughék is aG-invariant vector field and projects ovgr

Example5.17 (Kosmann lift). A fundamental example of&structure on a manifold is
given, of course, by the bundle $8, g) of its (pseudo-) orthonormal frames with respect



78 M. Godina, P. Matteucci/Journal of Geometry and Physics 47 (2003) 66—-86

to a metricg of signature(p, ¢), wherep + ¢ = m = dimM. SOM, g) is a principal
bundle (overM) with structure groups = SO(p, q). Now, recall that the natural lift of a
vector fieldé ontoLM is defined as

0 1
L = —L ,
& 5 (%3 o

{¢:} denoting the flow of. If (o”) denotes a (local) basis of right Gk, R)-invariant vector

fields onLM reading(o? = u23/8u¢) in some local chartx, u2) and (e, =: €;d,) is a
local section oL M, thenLé& has the local expression

LE = &%, + (L&)} ).
whereé =: &%¢, and
(L&) = €, (3, ey — £9,e)).

If we now let (e,) and (x*, u’;) denote a local section and a local chart of (30Qyg),
respectively, then the generalized Kosmannglifton SQ M, g) of a vector fields on M,
simply called itsKosmann liff 7], locally reads

£k = E%, + (LE)[an A,

where(A2) is a basis of right S@, p)-invariant vector fields on S@/, g) locally reading
(A% = r,‘f[“sz]pf), (L&)ab = nac(LE)j, and(nac) denote the components of the standard
Minkowski metric of signaturép, g).

Now, combiningProposition 3.1@ndTheorem 5.1%ields the following result, which,
in particular, will enable us to extend the concept of a Kosmann lift to the important context
of spinor fields.

Corollary 5.18. Let¢ : P — P be aI-structure over a classical G-structu®(M, G).
Then the generalized Kosmann lif of a vector fields on M lifts to a unique"-invariant)
vector fieldsk on P, which projects oveé.

6. Liederivativeson reductive G-structures

As already mentioned isection 1 the general theory of Lie derivatives stems from
Trautman’s seminal pap§27]. Here, we mainly follow the notation and conventions of
[20, Section 47]

Definition 6.1. Let M andN be two manifolds angt : M — N a map between them. By a
vector field along fve shallmeanamap : M — TNsuchthatyoZ = f,ty : TN— N
denoting the canonical tangent bundle projection.
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Definition 6.2. Let M, N and f be as above, and lét andY be two vector fields o/
andN, respectively. Then, by thgeneralized Lie derivativE y y, f of f with respect taX
andY we shall mean the vector field alorfggiven by

Exnf=TfoX—-Yof

If {¢;} and{®,} denote the flows ok andY, respectively, then one readily verifies that

~ d
Exnf = E(Cb—zOfO%) .
t=

An important specialization ddefinition 6.2is the following

Definition 6.3. Letz : B — M be a fibred manifoldg : M — B a section ofr, and
£ a projectable vector field ot over a vector field on M. Then, by thegeneralized Lie
derivativeEz o of o with respect taZ we shall mean the map

£zo = E@,E)G M — VB. (6.1)

(Itis easy to realize thdizo = To o £ — & o o takes indeed values in the vertical tangent
bundle simply by applying’r to it and remembering tha is projectable.)

Now recall that a fibred manifold : B — M admits avertical splittingif there exists
a linear bundle isomorphism (covering the identityR)fo : VB — B x,; B, wherer :
B — M is a vector bundle. In particular, a vector bundle B — M admits acanonical
vertical splittinge : VB — B x 3 B. Indeed, iftg : TB — B denotes the (canonical)
tangent bundle projection restricted\®, y is a point inB such thaty = tz(v) for a given
v e VB andy : R — By = n~1(n(y)) is a curve such that(0) = y and j3y = v, thena
is given bya(v) := (y, w), wherew := lim,_o(y(t) — (0))/t.

Proposition 6.4. In this casethe generalized Lie derivatiiso is of the form
£z0 = (0,£z0), (6.2)

the first component being the original sectienThe second componefito is a section
of B, called thelie derivative ofc with respect taZ. For the sake of claritythe operator
£ will be occasionally referred to as the restricted Lie derivafi2@, Section 47)]

Remark 6.5. In this case, on using the fact that £ is the derivative ofp_; o o o ¢; at
t = 0 in the classical sense, one can re-express the restricted Lie derivative in the form

1
Ego(x) = tllm) 7 (@100 0¢i(x) —o(x)). (6.3)

Proposition 6.4lso works wheneveB is anaffinebundle. This is so because, also in this
case,r : B — M admits a canonical vertical decompositien VB — B x; B, where
7 : B — M is the vector bundle associated wigh

Now, we can specializBefinition 6.3to the case of gauge-natural bundles in a straight-
forward manner.
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Definition 6.6. Let P, be a gauge-natural bundle associated with some principal bundle
P(M, G), & a G-invariant vector field onP projecting over a vector fiel§ on M, and

o : M — P, asection ofP,. Then, by thegeneralizedgauge-naturgl Lie derivative ol

with respect ta=' we shall mean the map

£zo: M — VP, £zo = Too& — &) oo, (64)

where&), is the generator of the 1-parameter gr¢up,), } of automorphisms of,, func-
torially induced by the flowf®,} of = [cf. (4.3)]. Equivalently,

= el
Fzo= —((@_)sooop)| (6.4)
ot t=0

{¢:} denoting the flow of.

As usual, whenever : P, — M admits a canonical vertical splitting P, , we shall
write £z0 : M — P, := P, for the corresponding restricted Lie derivative.
Furthermore, for each-structure; : P — P on P, we shall simply write £6 := £:0:
M — P;, P; denoting a gauge-natural bundle associated Wittadmitting a canonical
vertical splitting) and : M — PX one of its sections, sincg admits a uniquel(’-invariant)
lift = onto P (cf. Proposition 3.1)) We stress thadDefinition 6.6is the conceptually natural
generalization of the classical notion of a Lie derivaf{i88], to which it suitably reduces
when applied to natural objects and, hence, notably, to tensor fields and tensor densities.
Of course, we can now further specialize to the case of clasGiesttuctures and, in
particular, give the following definition.

Definition 6.7. Let P; be a gauge-natural bundle associated with some clasaisttlicture
P(M, G), &k the generalized Kosmann lift (o) of a vector fields on M, ando : M — P;,
a section ofP,. Then, by thegeneralized Lie derivativéso of o with respect t& we shall
mean the magi:o := £, o, wheref;, o denotes the generalized Lie derivativeooivith
respect téy in the sense dbefinition 6.6

Consistently, we shall simply write:& = £;0 : M — P, for the corresponding
restricted Lie derivative, whenever defined, apd £= £§K6 M — i’x for the (restricted)

Lie derivative of a sectiom of a gauge-natural bundINEX associated with some principal

prolongation of aI-structurez : P — P (and admitting a canonical vertical splitting),
which makes sense singe admits a uniquel(-invariant) liftéx onto P (cf. Corollary 5.18.

Example 6.8 (Lie derivative of spinor fields. I). IfExample 5.174ve mentioned that a
fundamental example of @-structure on a manifold/ is given by the bundle SQ@1, g)

of its (pseudo-) orthonormal frames. An equally fundamental example [ofsgucture

on SQM, g) is given by the corresponding spin bundle Spi g) with structure group

I' = Spin(p, q). Now, it is obvious that spinor fields can be regarded as sections of a
suitable gauge-natural bundle ovér Indeed, ifA is the linear representation of Spmn g)

on the vector spac€™ induced by a given choice ef matrices, then the associated vector
bundleS(M) := Spin(M, g) x, C™ is a gauge-natural bundle of ord€ 0) whose sections
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represent spinor fields (or, more precisely, spin-vector fields). Therefore, in spite of what
is sometimes believed, a Lie derivative of spinors (in the sengebihition 6.9 always
exists,no matter whathe vector fields on M is. Locally, such a Lie derivative reads

£V = % + 1 Bany V'Y

for any spinor fieldy, (Zap = Z[ay) denoting the components of an §Dg)-invariant
vector field& = &%, + EapA% on SQM, g), € = &%,, ande,y the Pfaff derivative

of y along the local sectiote, =: e}, 9,,) of SO(M, g) induced by some local section of
Spin(M, g). This is the most general notion of a (gauge-natural) Lie derivative of spinor
fields and the appropriate one for most situations of physical interesfl@R5): the
generality ofZ might be disturbing, but is thenavoidableindication thatS(M) is nota
natural bundle. If we wish nonetheless to remove such a generality, wechragtesome
canonical fiot natural) lift of £ onto SAM, g). The conceptuallyot mathematically)
most “natural” choice is perhaps given by the Kosmann lift (recall Example 5.17 and use
Corollary 5.18. The ensuing Lie derivative locally reads

£y = %, + F(LOEay Y Y V- (6.5)

Of course, if V' denotes the covariant derivative operator associated with the Levi-Civita
(or Riemannian) connection with respectgothe previous expression can be recast into
the form

e = EVay — 1VEn YV (6.5)

which reproduces exactly Kosmann's definiti@2] (se€[7] for further details and a more
thorough discussion). We stress that, althougthis caseits local expression would be
identical with(6.5), this isnotthe “metric Lie derivative” introduced by Bourguignon and
Gauduchon if2]. To convince oneself of this it is enough to take the Lie derivative of the
metricg, which is a section of theatural bundle\/2 T*M,*\/’ denoting the symmetrized
tensor product. Since the (restricted) Lie derivatiyérEthe sense obefinition 6.7must
reduce to the ordinary one on natural objects, it holds that

£1:8 = £8.

On the other hand, if£coincided with the operatoéﬁ:iefined by Bourguignon and Gaudu-
chon, the right-hand side of the above identity should equal[2¢Ryoposition 15]thereby
implying that¢ is a Killing vector field, contrary to the fact thatis completely arbitrary.
Indeed, in order to recover Bourguignon and Gauduchon’s definition, another concept of a
Lie derivative must be introduced.

We shall start by recalling two classical definitiqi3].

Definition 6.9. Let P(M, G) be a (classically-structure. Letp be a diffeomorphism o#/
onto itself andL¢ its natural lift ontoLM. If L1y mapsP onto itself, i.e. ifL1p(P) € P,
theng is called arautomorphisnof the G-structurepP.
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Definition 6.10. Let P(M, G) be aG-structure. A vector field on M is called anin-
finitesimal automorphisraf the G-structureP if it generates a local 1-parameter group of
automorphisms oP.

We can now generalize these concepts to the framework of redu@tsteuctures as
follows.

Definition 6.11. Let P(M, G) be a reductives-structure on a principal bundi@ (M, H)
and® a principal automorphism af. If @ mapsP onto itself, i.e. if®é(P) C P, then® is
called ageneralized automorphisof the reductiveG-structurep.

Of course, each element of AW, i.e. each principal automorphism Bf is by definition
a generalized automorphism of the reduct&@estructure P. Analogously, we have the
following definition.

Definition 6.12. Let P(M, G) be a reductives-structure on a principal bundi@ (M, H).

An H-invariant vector field=Z on Q is called ageneralized infinitesimal automorphism
of the reductiveG-structure P if it generates a local 1-parameter group of generalized
automorphisms oP.

Of course, each element&f; (P), i.e. eachG-invariant vector field orP, is by definition
a generalized infinitesimal automorphism of the reduativetructureP.
Now, along the lines of19, Proposition X.1.1jt is easy to prove the following

Proposition 6.13. Let P(M, G) be areductive G-structure on a principal bundkM, H).
An H-invariant vector field=Z on Q is a generalized infinitesimal automorphism of the
reductive G-structure P if and only H is tangent to P at each point of P

We then have the following important lemma.

Lemma6.14. Let P(M, G) be a reductive G-structure on a principal bundb M, H) and

Z a generalized infinitesimal automorphism of the reductive G-structure P, Tireflow
{®,} of Z, it being H-invariant induces on each gauge-natural bundlg associated with
Q al-parameter groud(®;),} of global automorphisms

Proof. SinceZ is by assumption a generalized infinitesimal automorphism, it is by defi-
nition an H-invariant vector field orQ. Therefore, its flow(®,} is a 1-parameter group of
H-equivariant maps on the subgebf Q. Then, if 0, = W*"Q x; F, we set

(@0, ([u, 1) = [Wrh e, ), f15,

u € Q, f € F,and are back to the situation of forma3). O

Corollary 6.15. Let P(M, G) and Q(M, H) be as in the previous lemmand letZ be an
H-invariant vector field on Q. Therthe flow{(®k);} of the generalized Kosmann vector
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field Zx associated witlE' induces on each gauge-natural bundlg associated with Q a
1-parameter groud((®k);),} of global automorphisms

Proof. Recall that, although the generalized Kosmann vector fi&{dis a G-invariant
vector field onP, it is H-invariant if regarded as a vector field on the corresponding subset
of Q (cf. Remark 5.7and Corollary 5.15. Therefore, its flon(®k),} is a 1-parameter
group of H-equivariant automorphisms on the subBaif Q.

We now want to define a 1-parameter group of automorphigit®x),),} of 0, =
WhkhQ x, F.Let[u, fl, € Qs,u € Q and f € F, and letu; be a point inP such
thatz(uy) = #(u), 7 : Q — M denoting the canonical projection. There exists a unique
a1 € H such thatt = uq - a;. Set then

(@) (u, £1i) i= [WEM (@), (1), a1 f1;.

We must show that, given another point € P such thatt = u2 - ax for some (unique)
a» € H, we have

[WER (@) (1), a1 f1x = [WE" (k)i (12), az f1s..

Indeed, since the action @f is free and transitive on the fibres, fraimn= u4 - a; and
u = up-aitfollows thatay = a-az ora =ay - (az) "t ora; = a1 - a1. But then

(W (@) (1), az f1n = [WE (k)i (ur - @), a™t - ar f1,
= [WE (@), (1) © Whta, a - ag f];,
= [W*(®k), (1), a1 £

as claimed. Itis then easy to see that the so-defi(®d),), does not depend on the chosen
representative. a

By virtue of the previous corollary, we can now give the following definition.

Definition 6.16. Let P(M, G) be a reductiveG-structure on a principal bundi@(M, H),
G # {e}, and& an H-invariant vector field orQ projecting over a vector fieldon M. Let
0, be a gauge-natural bundle associated Witando : M — Q; a section ofQ;. Then,
by thegeneralized G-reductive Lie derivativeofvith respect taZ we shall mean the map

~ 0
ESo = —((@K)-Drooop)|
ot t=0

{¢:} denoting the flow of.

The corresponding notions of a restricted Lie derivative and a (generalized or restricted)
Lie derivative on an associatddstructure can be defined in the usual way.

Remark 6.17. WhenQ = P (andH = G), E is just Z, and we recover the notion of a
(generalized) Lie derivative in the sensdldfinition 6.6 but, asG is required not to equal
the trivial group{e}, Q;. is never allowed to be a (purely) natural bundle.
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By its very definition, the (restrictedy-reductive Lie derivative doesot reduce, in
general, to the ordinary (natural) Lie derivative on fibre bundles associated {Mth This
fact makes it unsuitable in all those situations where one needsgaeoperator which
reproduce “standard results” when applied to “standard objects”.

In other words, g is defined with respect to sonpee-assignedgeneralized) symme-
tries. We shall make this statement explicitRnoposition 6.1%elow, which provides a
generalization of a well-known classical result.

LetthenK be atensor over the vector sp&® (i.e. an element of the tensor algebra over
R™) andG the group of linear transformations &f* leavingK invariant. Recall that each
reduction of the structure group @k, R) to G gives rise to a tensor field on M. Indeed,
we may regard eaah € LM as a linear isomorphism &” onto 7T, M, wherex = n(x) and
7 : LM — M denotes, as usual, the canonical projection. No®( M, G) is aG-structure,
at each poink of M we can choose a framebelonging toP such thatr(u) = x. Sinceu
is a linear isomorphism dR™ onto the tangent spad M, it induces an isomorphism of
the tensor algebra ov@™ onto the tensor algebra ov&fM. ThenK, is the image oK
under this isomorphism. The invariancekoby G implies thatk, is defined independent
of the choice oft in 7~1(x). Then, we have the following classical regif].

Proposition 6.18. LetK be a tensor over the vector spaR€ and G the group of linear
transformations oR™ leavingK invariant. Let P be a G-structure on M and K the tensor
field on M defined biK and P. Then

1. a diffeomorphismp : M — M is an automorphism of the G-structure Pdffeaves K
invariant;
2. avector fieldt on M is an infinitesimal automorphism of P#ff K = 0.

Now, we can use the concept oGareductive Lie derivative to state an analogous result
for generalized automorphisms Bf

Proposition 6.19. In the same hypotheses of the previous proposition

1. an automorphism® : LM — LM is a generalized automorphism of the G-structure P
iff @ leaves K invariant

2. aGL(m, R)-invariant vector field= on LM is an infinitesimal generalized automorphism
of PiffEZK = 0.

Note that the Lie derivative X is well-defined sinceX is a tensor field on and
therefore a section of a vector bundle associated Wif?(LM) = LM. Here,Q = LM
and H = GL(m, R). Nevertheless, consistently with what we said previoukhhas to
be regarded here as a section ajaugenatural, not simply natural, bundle ovef (cf.
Example 4.10 The choiceP = Q = LM, G = H = GL(m,R) and&Ex = & = L&
reproduces Kobayashi's classical result.

Corollary 6.20. Let & be a generalized infinitesimal automorphismSs) M, g). Then
SO(p.q)
£- g=0.
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The last corollary suggests that Bourguignon and Gauduchon’s metric Lie derivative
might be a particular instance of a reductive Lie derivative. This is precisely the case, as
explained in the following fundamental example.

Example 6.21 (Lie derivative of spinor fields. II). We know that the Kosmann§ittonto
SQ(M, g) of a vector fields on M is an SQp, g)-invariant vector field on S/, g), and
hence its liftx onto SpinM, g) is a Spin(p, g)-invariant vector field. As the spinor bundle
S(M) is a vector bundle associated with Sgifi g), the SQip, g)-reductive Lie derivative
Egsf(”’q)w of a spinor fieldy coincides with £, i.e. locally with expressio(6.5)or (6.5).
Indeed, in Ehis case we have, yvith an obvious notat@n: P = SO M, g), H = G =
SOM. g), 0 = Spin(M, g) and Q; = S(M).

For éf(p"”g a similar remark to the one above fogK applies and therefore, if =
guwv dx* v dx” in some natural chart, we have the local expression

SQ(p,
EgKO(p q)g/w = gpapg;w + ng(u (SK)S)
SQ(p,
= 5papguv+gp(uav)sp_afﬂgv)aapfg_spfggm dpgve=0= EO(p q)g//.v

quite different from the usuah@tural) Lie derivative

ELSg;w = Epapg;w + ng(u(Lg)ﬁ) = éfpapguu + ngwav)%-p
= Zv(uév) = Eég;/.v = £Eguv-

7. Discussion

In this paper we have investigated the hoary problem of the Lie derivative of spinor fields
from a very general point of view, following a functorial approach. We have done so by
relying on three nice geometric constructions: split structures, gauge-natural bundles and
the general theory of Lie derivatives.

Such analysis has shown that, although for (purely) natural objects over a mawifold
there is a conceptually and mathematically natural definition of a Lie derivative with respect
to a vector field onV, there is no such thing for more general gauge-natural objects, the
vector field onM being necessarily replaced byainvariant vector field on some principal
bundleP(M, G).

Conceptually speaking, though, there are at least two obvious definitions of a Lie deriva-
tive of spinor fields, both relying on a canonical, not natural, lift of a vector fielgifammto
the bundle of its orthonormal frames, the so-called “Kosmann lift". Both definitions are ge-
ometrically well-defined and have their own range of applicability, but, in general, only the
gauge-natural one reduces to the standard definition of a Lie derivative on natural objects.
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