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Abstract

ReductiveG-structures on a principal bundleQ are considered. It is shown that these structures,
i.e. reductiveG-subbundlesP ofQ, admit a canonical decomposition of the pull-back vector bundle
i∗P(TQ) ≡ P ×Q TQ overP . For classicalG-structures, i.e. reductiveG-subbundles of the linear
frame bundle, such a decomposition defines an infinitesimal canonical lift. This lift extends to a
prolongationΓ -structure onP . In this general geometric framework the theory of Lie derivatives
is considered. Particular emphasis is given to the morphisms which must be taken in order to state
what kind of Lie derivative has to be chosen. On specializing the general theory of gauge-natural
Lie derivatives of spinor fields to the case of the Kosmann lift, we recover the result originally
found by Kosmann. We also show that in the case of a reductiveG-structure one can introduce a
“reductive Lie derivative” with respect to a certain class of generalized infinitesimal automorphisms.
This differs, in general, from the gauge-natural one, and we conclude by showing that the “metric
Lie derivative” introduced by Bourguignon and Gauduchon is in fact a particular kind of reductive
rather than gauge-natural Lie derivative.
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1. Introduction

It has now become apparent that there has been some confusion regarding the concept of
a Lie derivative of spinor fields, both in the mathematical and the physical literature.
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Lichnerowicz was the first one to give a correct definition for such an object, although
with respect to infinitesimal isometries only. The local expression given by Lichnerowicz
in 1963[24] is

£ξψ := ξa∇aψ − 1
4∇aξbγ

aγbψ, (∗)

where∇aξb = ∇[aξb] , asξ is assumed to be a Killing vector field.
After a first attempt to extend Lichnerowicz’s definition to generic infinitesimal transfor-

mations[21], in 1972 Kosmann put forward a new definition of a Lie derivative of spinor
fields in[22], her doctoral thesis under Lichnerowicz’s supervision. Indeed, in her previous
work she had just extendedtout courtLichnerowicz’s definition to the case of a generic
vector fieldξ, without antisymmetrizing∇aξb. Therefore, the local expression appearing in
[21] could not be given any clear-cut geometrical meaning. The remedy was then realized to
be retaining Lichnerowicz’s local expression(∗) for a genericvector fieldξ, but explicitly
taking the antisymmetric part of∇aξb only [22].

Several papers on the subject followed, including particularly Binz and Pferschy’s[1]
and Bourguignon and Gauduchon’s[2]. Furthermore, among the physics community much
interest has been attracted by Penrose and Rindler’s definition[26], despite its being re-
stricted to infinitesimal conformal isometries because of the (implicit) requirement that the
Lie derivative commute with the isomorphism between the complexified tangent bundle and
the tensor product of the spinor bundle and its complex conjugate (see[5] for a thorough
discussion).

In this paper we investigate whether the definition of a Lie derivative of spinor fields
can be placed in the more general framework of the theory of Lie derivatives of sections
of fibred manifolds (and, more generally, of differentiable maps between two manifolds)
stemming from Trautman’s 1972 seminal paper[27] and further developed by Janyška and
Kolář [16] (see also[20]).

A first step in this direction was already taken in[7], where Kosmann’s 1972 definition
was successfully placed in the framework of the theory of Lie derivatives of sections of
gauge-natural bundlesby introducing a new geometric concept, which the authors called
the “Kosmann lift”.

The aim of this paper is to provide a more transparent geometric explanation of the
Kosmann lift and, at the same time, a generalization to reductiveG-structures. Indeed, the
Kosmann lift is but aparticular caseof this interesting generalization.

The structure of the paper is as follows: inSection 2preliminary notions on principal
bundles are recalled for the main purpose of fixing our notation; inSection 3the concept
of a reductiveG-structure and its main properties are introduced; inSection 4a construc-
tive approach to gauge-natural bundles is proposed together with a number of relevant
examples; inSection 4split structures on principal bundles are considered and the notion
of a generalized Kosmann lift is defined; finally, inSection 6the general theory of Lie
derivatives is applied to the context of reductiveG-structures, allowing us to analyse the
concept of the Lie derivative of spinor fields in all its different flavours from the most
general point of view. The proofs of the results presented in this paper mainly consist of
the careful application of the definitions which precede them, and therefore are mostly
omitted.
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2. Notation

Let M be a manifold andG a Lie group. Aprincipal (fibre) bundleP over M with
structure groupG is obtained by attaching a copy ofG to each point ofM, i.e. by giv-
ing a G-manifold P , on whichG acts on the right and which satisfies the following
conditions:

1. The (right) actionr : P × G → P of G onP is free, i.e.u · a := r(u, a) = u, u ∈ P ,
impliesa = e, e being the unit element ofG.

2. M = P/G is the quotient space ofP by the equivalence relation induced byG, i.e.M
is the space of orbits. Moreover, the canonical projectionπ : P → M is smooth.

3. P is locally trivial, i.e.P is locally a productU × G, whereU is an open set inM.
More precisely, there exists a diffeomorphismΦ : π−1(U) → U ×G such thatΦ(u) =
(π(u), f(u)), where the mappingf : π−1(U) → G is G-equivariant, i.e. f(u · a) =
f(u) · a for all u ∈ π−1(U), a ∈ G.

A principal bundle will be denoted by(P,M, π;G), P(M,G), π : P → M or simplyP ,
according to the particular context.P is called thebundle(or total) space, M thebase, G
thestructure group, andπ theprojection. The closed submanifoldπ−1(x), x ∈ M, will be
called thefibre overx. For any pointu ∈ P , we haveπ−1(x) = u · G, whereπ(u) = x,
andu · G will be called thefibre throughu. Every fibre is diffeomorphic toG, but such a
diffeomorphism depends on the chosen trivialization.

Given a manifoldM and a Lie groupG, the product manifoldM × G is a principal
bundle overM with projection pr1 : M × G → M and structure groupG, the action
being given by(x, a) · b = (x, a · b). The manifoldM × G is called atrivial principal
bundle.

A homomorphismof a principal bundleP ′(M ′,G′) into another principal bundleP(M,G)

consists of a differentiable mappingΦ : P ′ → P and a Lie group homomorphismf : G′ →
G such thatΦ(u′ · a′) = Φ(u′) · f(a′) for all u′ ∈ P ′, a′ ∈ G′. Hence,Φ maps fibres into
fibres and induces a differentiable mappingϕ : M ′ → M by ϕ(x′) = π(Φ(u′)), u′ being
an arbitrary point overx′. A homomorphismΦ : P ′ → P is called anembeddingif
ϕ : M ′ → M is an embedding andf : G′ → G is injective. In such a case, we can identify
P ′ with Φ(P ′), G′ with f(G′) andM ′ with ϕ(M ′), andP ′ is said to be asubbundleof P . If
M ′ = M andϕ = idM , P ′ is called areduced subbundleor a reductionof P , and we also
say thatG “reduces” to the subgroupG′.

A homomorphismΦ : P ′ → P is called anisomorphismif there exists a homomorphism
of principal bundlesΨ : P → P ′ such thatΨ ◦ Φ = idP ′ andΦ ◦ Ψ = idP .

3. Reductive G-structures and their prolongations

Definition 3.1. Let H be a Lie group andG a Lie subgroup ofH . Denote byh the Lie
algebra ofH and byg the Lie algebra ofG. We shall say thatG is areductive Lie subgroup
of H if there exists a direct sum decomposition

h = g⊕m,
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wherem is an AdG-invariant vector subspace ofh, i.e. Ada(m) ⊂ m for all a ∈ G (which
means that the AdG representation ofG in h is reducible into a direct sum decomposition
of two AdG-invariant vector spaces; cf.[18, p. 83]).

Remark 3.2. A Lie algebrah and a Lie subalgebrag satisfying these properties form a
so-calledreductive pair(cf. [4, p. 103]). Moreover, AdG(m) ⊂ m implies [g,m] ⊂ m, and,
conversely, ifG is connected, [g,m] ⊂ m implies AdG(m) ⊂ m [19, p. 190].

Example 3.3. Consider a subgroupG ⊂ H and suppose that an AdG-invariant metric
K can be assigned on the Lie algebrah (e.g. if H is a semisimple Lie group,K could
be the Cartan–Killing form: indeed, this form is AdH -invariant and, in particular, also
AdG-invariant). Set

m := g⊥ ≡ {v ∈ h|K(v, u) = 0 ∀ u ∈ g}.
Obviously,h can be decomposed as the direct sumh = g⊕ m and it is easy to show that,
under the assumption of AdG-invariance ofK, the vector subspacem is also AdG-invariant.

Example 3.4 (The unimodular group). The unimodular group SL(m,R) is an example of
a reductive Lie subgroup of GL(m,R). To see this, first recall that its Lie algebrasl(m,R)

is formed by allm × m traceless matrices. IfM is any matrix ingl(m,R), the following
decomposition holds:

M = U + 1

m
tr(M)I,

whereI := idgl(m,R) andU is traceless. Indeed,

tr(U) = tr(M) − 1

m
tr(M) tr(I) = 0.

Accordingly, the Lie algebragl(m,R) can be decomposed as follows:

gl(m,R) = sl(m,R) ⊕ RI.

In this case,m is the set of all real multiples ofI, which is obviously adjoint-invariant under
SL(m,R). Indeed, ifS is an arbitrary element of SL(m,R), for anya ∈ R one has

AdS(aI) ≡ S(aI)S−1 = aISS−1 = aI.

This proves thatRI is adjoint-invariant under SL(m,R), and SL(m,R) is a reductive Lie
subgroup of GL(m,R).

Given the importance of the following example for the future developments of the theory,
we shall state it as a proposition.

Proposition 3.5. The(pseudo-) orthogonal groupSO(p, q), p+ q = m, is a reductive Lie
subgroup ofGL(m,R).
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Proof. Letη denote the standard metric of signature(p, q), withp+q = m, onR
m ≡ R

p,q

andM be any matrix ingl(m,R). Denote byM� the adjoint (transpose) ofM with respect to
η, defined by requiringη(M�v, v′) = η(v,Mv′) for all v, v′ ∈ R

m. Of course, any traceless
matrix can be (uniquely) written as the sum of an antisymmetric matrix and a symmetric
traceless matrix. Therefore

sl(m,R) = so(p, q) ⊕ V,

so(p, q) denoting the Lie algebra of the (pseudo-) orthogonal group SO(p, q) for η, formed
by all matricesA in gl(m,R) such thatA� = −A, andV the vector space of all matrices
V in sl(m,R) such thatV� = V. Now, let O be any element of SO(p, q) and setV′ :=
AdOV ≡ OVO−1 for anyV ∈ V. We have

V′� = (OVO�)� = V′

becauseV� = V andO−1 = O�. Moreover,

tr(V′) = tr(O) tr(V) tr(O−1) = 0

sinceV is traceless. So,V′ is inV, thereby proving thatV is adjoint-invariant under SO(p, q).
Therefore, SO(p, q) is a reductive Lie subgroup of SL(m,R) and, hence, also a reductive
Lie subgroup of GL(m,R) by virtue ofExample 3.4. �

Definition 3.6. A reductive G-structureon a principal bundleQ(M,H) is a principal sub-
bundleP(M,G) of Q(M,H) such thatG is a reductive Lie subgroup ofH .

Now, since later on we shall consider the case of spinor fields, it is convenient to give the
following general definition.

Definition 3.7. LetP(M,G)be a principal bundle andρ : Γ → Ga central homomorphism
of a Lie groupΓ ontoG, i.e. such that its kernel is discrete and contained in the centre of
Γ [14] (see also[15]). A Γ -structureon P(M,G) is a principal bundle mapζ : P̃ → P

which is equivariant under the right actions of the structure groups, i.e.

ζ(ũ · α) = ζ(ũ) · ρ(α)
for all ũ ∈ P̃ andα ∈ Γ .

Equivalently, we have the following commutative diagrams:

ra andr̃α denoting the right multiplication onP andP̃ , respectively (see[8]). This means
that, forũ ∈ P̃ , bothũ andζ(ũ) lie over the same point, andζ, restricted to any fibre, is a
“copy” of ρ, i.e. it is equivalent to it. The existence condition for aΓ -structure onP can be
formulated in terms of̌Cech cohomology[15,14,23].
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Remark 3.8. The bundle mapζ : P̃ → P is a covering space since its kernel is discrete.

Recall now that for any principal bundle(P,M, π,G) a (principal) automorphismof P
is a diffeomorphismΦ : P → P such thatΦ(u ·a) = Φ(u) ·a for everyu ∈ P , a ∈ G. Each
Φ induces a unique diffeomorphismϕ : M → M such thatπ ◦ Φ = ϕ ◦ π. Accordingly,
we shall denote by Aut(P) the group of all principal automorphisms ofP . Assume that a
vector fieldΞ on P generates a local 1-parameter group{Φt}. Then,Ξ is G-invariant if
and only ifΦt is an automorphism ofP for everyt ∈ R. Accordingly, we denote byXG(P)
the Lie algebra ofG-invariant vector fields onP .

Now recall that, given a fibred manifoldπ : B → M, aprojectable vector fieldonB over
a vector fieldξ onM is a vector fieldΞ onB such thatTπ ◦Ξ = ξ ◦π. Then, the following
proposition is evident.

Proposition 3.9. LetP(M,G) be a principal bundle. Then, every G-invariant vector field
Ξ on P is projectable over a unique vector fieldξ on the base manifold M.

Proposition 3.10. Let ζ : P̃ → P be aΓ -structure onP(M,G). Then, everyG-invariant
vector fieldΞ on P admits a unique(Γ -invariant) lift Ξ̃ ontoP̃ .

Proof. Consider aG-invariant vector fieldΞ, its flow being denoted by{Φt}. For eacht ∈ R,
Φt is an automorphism ofP . Moreover,ζ : P̃ → P being a covering space, it is possible
to lift Φt to a (unique) bundle map̃Φt : P̃ → P̃ in the following way. For any point̃u ∈ P̃ ,
consider the (unique) pointζ(ũ) = u. From the theory of covering spaces it follows that, for
the curveγu : R → P based atu, that isγu(0) = u, and defined byγu(t) := Φt(u), there
exists a unique curvẽγũ : R → P̃ based at̃u such thatζ ◦ γ̃ũ = γu. It is possible to define a
principal bundle map̃Φt : P̃ → P̃ coveringΦt by settingΦ̃t(ũ) := γ̃ũ(t). The 1-parameter
group of automorphisms{Φ̃t} of P̃ defines a vector field̃Ξ(ũ) := ∂/∂t[Φ̃t(ũ)]|t=0 for all
ũ ∈ P̃ . �

Proposition 3.11. Let ζ : P̃ → P be aΓ -structure onP(M,G). Then, everyG-invariant
vector fieldΞ̃ on P̃ is projectable over a unique G-invariant vector fieldΞ on P.

Proof. Consider aΓ -invariant vector field̃Ξ onP̃ . Denote its flow by{Φ̃t}. EachΦ̃t induces
a unique automorphismΦt : P → P such thatζ ◦ Φ̃t = Φt ◦ ζ and, hence, a unique vector
fieldΞ onP given byΞ(u) := ∂/∂t[Φt(u)]|t=0 for all u ∈ P . �

Corollary 3.12. Letζ : P̃ → P be aΓ -structure onP(M,G). There is a bijection between
G-invariant vector fields on P andΓ -invariant vector fields oñP .

4. Gauge-natural bundles

In this section we shall introduce the category of gauge-natural bundles[6,20] and give
a number of relevant examples. Geometrically, gauge-natural bundles possess a very rich
structure, which generalizes the classical one of natural bundles. From the physical point
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of view, this framework enables one to treat at the same time, under a unifying formalism,
natural field theories such as general relativity, gauge theories, as well as bosonic and
fermionic matter field theories (cf.[8,9,12,25]).

Definition 4.1. Let j+pf denote the+th order jet prolongation of a mapf evaluated at a
pointp. The set

{jk0α|α : R
m → R

m, α(0) = 0, locally invertible}
equipped with the jet compositionjk0α ◦ jk0α

′ := jk0(α ◦ α′) is a Lie group called thekth
differential groupand denoted byGk

m.

Fork = 1 we have, of course, the identificationG1
m

∼= GL(m,R).

Definition 4.2. Let M be anm-dimensional manifold. The principal bundle overM with
groupGk

m is called thekth order frame bundleoverM and will be denoted byLkM.

For k = 1 we have, of course, the identificationL1M ∼= LM, whereLM is the usual
(principal)bundle of linear framesoverM (cf. e.g.[18]).

Definition 4.3. Let G be a Lie group. Then, thespace of(m, h)-velocitiesof G is defined
as

T h
mG := {jh0a|a : R

m → G}.

Thus,T h
mG denotes the set ofh-jets with source at the origin 0∈ R

m and target inG.
It is a subset of the manifoldJh(Rm,G) of r-jets with source inRm and target inG. The
setJh(Rm,G) is a fibre bundle overRm with respect to the canonical jet projection of
Jh(Rm,G) onR

m, andT h
mG is its fibre over 0∈ R

m. Moreover, the setT h
mG can be given

the structure of a Lie group. Indeed, letS, T ∈ T h
mG be any elements. We define a (smooth)

multiplication inT h
mG by

T h
mµ : T h

mG × T h
mG → T h

mG, T h
mµ : (S = jh0a, T = jh0b) �→ S · T := jh0(a · b),

where(a · b)(x) := a(x) · b(x) ≡ µ(a(x), b(x)) is the group multiplication inG. The
mapping(S, T) �→ S · T is associative; moreover, the elementjh0e, e denoting both the unit
element inG and the constant mapping fromRm to e, is the unit element ofT h

mG, and
jr0a

−1, wherea−1(x) := (a(x))−1 (the inversion being taken in the groupG), is the inverse
of jh0a.

Definition 4.4. Consider a principal bundleP(M,G). Let k andh be two natural numbers
such thatk ≥ h. Then, by the(k, h)-principal prolongationof P we shall mean the bundle

Wk,hP := LkM ×M JhP, (4.1)

whereLkM is thekth order frame bundle ofM andJhP thehth order jet prolongation of
P . A point ofWk,hP is of the form(jk0ε, j

h
xσ), whereε : R

m → M is locally invertible and
such thatε(0) = x, andσ : M → P is a local section around the pointx ∈ M.
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Unlike JhP , Wk,hP is a principal bundle overM whose structure group is

Wk,h
m G := Gk

m � T h
mG.

Wk,h
m G is called the(m; k, h)-principal prolongationof G. The group multiplication on

Wk,h
m G is defined by the following rule:

(jk0α, j
h
0a) � (jk0β, j

h
0b) := (jk0(α ◦ β), jh0((a ◦ β) · b)),

‘ ·’ denoting the group multiplication inG. The right action ofWk,h
m G on Wk,hP is then

defined by

(jk0ε, j
h
xσ) � (jk0α, j

h
0a) := (jk0(ε ◦ α), jhx (σ · (a ◦ α−1 ◦ ε−1))),

‘ ·’ denoting now the canonical right action ofG onP .

Definition 4.5. LetΦ : P → P be an automorphism over a diffeomorphismϕ : M → M.
We define anautomorphism ofWk,hP associated withΦ by

Wk,hΦ : Wk,hP→Wk,hP, Wk,hΦ : (jk0ε, j
h
xσ) �→ (jk0(ϕ ◦ ε), jhx (Φ ◦ σ ◦ ϕ−1)).

(4.2)

Proposition 4.6. The bundle morphismWk,hΦ preserves the right action, thereby being a
principal automorphism.

By virtue of (4.1) and (4.2)Wk,h turns out to be a functor from the category of principal
G-bundles overm-dimensional manifolds and local isomorphisms to the category of prin-
cipalWk,h

m G-bundles[20]. Now, letPλ := Wk,hP ×λ F be a fibre bundle associated with
P(M,G) via an actionλ ofWk,h

m G on a manifoldF . There exists canonical representation of
the automorphisms ofP induced by(4.2). Indeed, ifΦ : P → P is an automorphism over a
diffeomorphismϕ : M → M, then we can define the correspondinginduced automorphism
Φλ as

Φλ : Pλ → Pλ, Φλ : [u, f ]λ �→ [Wk,hΦ(u), f ]λ, (4.3)

which is well defined since it turns out to be independent of the representative(u, f )λ, u ∈
P , f ∈ F . This construction yields a functor·λ from the category of principalG-bundles
to the category of fibred manifolds and fibre-respecting mappings.

Definition 4.7. A gauge-natural bundle of order(k, h) overM associated withP(M,G)

is any such functor.

If we now restrict attention to the caseG = {e} andh = 0, we can recover the classical
notion of natural bundles overM. In particular, we have the following definition.

Definition 4.8. Let ϕ : M → M be a diffeomorphism. We define an automorphism of
LkM associated withϕ, called itsnatural lift, by

Lkϕ : LkM → LkM, Lkϕ : jk0ε �→ jk0(ϕ ◦ ε).
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Then,Lk turns out to be a functor from the category ofm-dimensional manifolds and
local diffeomorphisms to the category of principalGk

m-bundles. Now, given any fibre bundle
associated withLkM and any diffeomorphism onM, we can define a corresponding induced
automorphism in the usual fashion. This construction yields a functor from the category of
m-dimensional manifolds to the category of fibred manifolds.

Definition 4.9. A natural bundle of order koverM is any such functor.

We shall now give some important examples of (gauge-) natural bundles.

Example 4.10 (Bundle of tensor densities). A first fundamental example of a natural bun-
dle is given, of course, by the bundlewT r

s M of tensor densities of weightw over an
m-dimensional manifoldM. Indeed,wT r

s M is a vector bundle associated withL1M via
the following left action ofG1

m
∼= W1,0

m {e} on the vector spaceT r
s (R

m):

λ : G1
m × T r

s (R
m) → T r

s (R
m),

λ : (αjk, t
p1...pr
q1...qs

) �→ α
p1
k1

· · ·αprkr t
k1...kr
l1...ls

α̃l1q1
· · · α̃lsqs (detα)−w,

the tilde over a symbol denoting matrix inversion. Forw = 0 we recover the bundle
of tensor fields overM. This is a definition ofwT r

s M which is appropriate for physical
applications, where one usually considersonly those (active) transformations of tensor
fields that arenaturally induced by some transformations on the base manifold. Somewhat
more unconventionally, though, we can regardwT r

s M as agauge-natural vector bundle
associated withW0,0(LM). Of course, the two bundles under consideration are the sameas
objects, but theirmorphismsare different.

Example 4.11 (Bundle ofG-invariant vector fields). LetV := R
m ⊕ g, g denoting the Lie

algebra ofG, and consider the following action:

λ : W1,1
m G × V→ V, λ : ((αjk, a

q, arl ), (ν
i, vp)) �→ (αijν

j, Ap
q (a)(v

q + a
q
jν

j)),

(4.4)

where(aq, arl ) denote natural coordinates onT 1
mG: a generic elementj1

0f ∈ T 1
mG is rep-

resented bya = f(0) ∈ G, i.e. aq = fq(0), andarl = (∂l(a
−1f(x))|rx=0. Obviously,

W1,1P ×λ V ∼= TP/G, its sections thus representingG-invariant vector fields onP .

Example 4.12 (Bundle of verticalG-invariant vector fields). Takeg as the standard fibre
and consider the following action:

λ : W1,1
m G × g→ g, λ : ((αjk, a

q, arl ), v
p) �→ Ap

q (a)v
q. (4.5)

It is easy to realize thatW1,1P ×λ g ∼= VP/G ∼= (P × g)/G, the bundle of vertical
G-invariant vector fields onP . Of course, in this example, we see thatg is already a
G-manifold and so(P ×g)/G is a gauge-natural bundle of order(0,0), i.e. a vector bundle
associated withW0,0P ∼= P . In other words, giving action(4.5)amounts to regarding the
original G-manifold g as aW1,1

m G-manifold via the canonical projection of Lie groups
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W1,1
m G → G. It is also meaningful to think of action(4.5) as settingνi = 0 in (4.4), and

hence one sees that the first jet contribution, i.e.a
p
i , disappears.

5. Split structures on principal bundles

It is known that, given a principal bundleP(M,G), aprincipal connectiononP may be
viewed as a fibreG-equivariant projectionΦ : TP → VP, i.e. as a 1-form inΩ1(P,TP) such
thatΦ◦Φ = Φ and imΦ = VP. Here, “G-equivariant” means thatTra ◦Φ = Φ◦Tra for all
a ∈ G. Then,HP := kerΦ is a constant-rank vector subbundle ofTP, called thehorizontal
bundle. We have a decompositionTP = HP ⊕ VP andTuP = HuP ⊕ VuP for all u ∈ P .
The projectionΦ is called thevertical projectionand the projectionχ := idTP −Φ, which
is alsoG-equivariant and satisfiesχ ◦ χ = χ and imχ = kerΦ, is called thehorizontal
projection.

This is, of course, a well-known example of a “split structure” on a principal bundle. We
shall now give the following general definition, due—for pseudo-Riemannian manifolds—
to a number of authors[3,10,13,28,29]and more generally to Gladush and Konoplya[11].

Definition 5.1. An r-split structureon a principal bundleP(M,G) is a system ofr fibre
G-equivariant linear operators{Φi ∈ Ω1(P,TP)}, i = 1,2, . . . , r, of constant rank with the
properties:

Φi · Φj = δijΦj,

r∑

i=1

Φi = idTP. (5.1)

We introduce the notations:

Σi
u := imΦi

u, ni := dimΣi
u, (5.2)

where imΦi
u is the image of the operatorΦi at a pointu of P , i.e.Σi

u = {v ∈ TuP |Φi
u ◦v =

v}. Owing to the constancy of the rank of the operators{Φi}, the numbers{ni} do not depend
on the pointu of P . It follows from the very definition of anr-split structure that we have
aG-equivariant decomposition of the tangent space:

TuP =
r⊕

i=1

Σi
u, dimTuP =

r∑

i=1

ni.

Obviously, the bundleTP is also decomposed intor vector subbundles{Σi} so that

TP =
r⊕

i=1

Σi, Σi =
⋃

u∈P
Σi

u. (5.3)

Remark 5.2. In general, ther vector subbundles{Σi → P} areanholonomic, i.e. non-
integrable, and are not vector subbundles ofVP. For a principal connection, i.e. for the case
TP = HP ⊕ VP, the subbundleVP is integrable.
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Proposition 5.3. An equivariant decomposition of TP into r vector subbundles{Σi} as
given by(4.3), with Tur

a(Σi
u) = Σi

u·a, induces a system of r fibre G-equivariant linear
operators{Φi ∈ Ω1(P,TP)} of constant-rank satisfying properties(5.1) and (5.2).

Proposition 5.4. Given an r-split structure on a principal bundleP(M,G), every G-
invariant vector fieldΞ on P splits into r invariant vector fields{Ξi} such thatΞ =
Ξ1 ⊕ · · · ⊕ Ξr andΞi(u) ∈ Σi for all u ∈ P andi = 1,2, . . . , r.

Remark 5.5. The vector fields{Ξi} are compatible with the{Σi}, i.e. they are sections
{Ξi : P → Σi} of the vector bundles{Σi → P}.

Corollary 5.6. LetP(M,G) be a reductive G-structure on a principal bundleQ(M,H) and
let iP : P → Q be the canonical embedding. Then, any given r-split structure onQ(M,H)

induces an r-split structure restricted toP(M,G), i.e. an equivariant decomposition of
i∗P(TQ) ≡ P ×Q TQ = { (u, v) ∈ P × TQ|iP (u) = τQ(v)} such thati∗P(TQ) = i∗P(Σ

1) ⊕
· · ·⊕i∗P(Σ

r),and anyH-invariant vector fieldΞ on Q restricted to P splits into r G-invariant
sections of the pull-back bundles{i∗P(Σi) ≡ P×QΣi}, i.e.Ξ = Ξ1⊕· · ·⊕Ξr withΞi(u) ∈
Σi for all u ∈ P andi ∈ {1,2, . . . , r}.

Remark 5.7. Note that the pull-backi∗P is anatural operation, i.e. it respects the splitting
i∗P(TQ) = i∗P(Σ

1) ⊕ · · · ⊕ i∗P(Σ
r). In other words, the pull-back of a splitting forQ is a

splitting of the pull-backs forP . Furthermore, although the vector fields{Ξi} areG-invariant
sections of their respective pull-back bundles, they areH-invariant if regarded as vector
fields on the corresponding subsets ofQ.

In Section 4we saw thatWk,hP is a principal bundle overM. Consider in particular
W1,1P , the(1,1)-principal prolongation ofP . The fibred manifoldW1,1P → M coincides
with the fibred productW1,1P := L1M ×M J1P overM. We have two canonical principal
bundle morphisms pr1 : W1,1P → L1M and pr2 : W1,1P → P . In particular, pr2 :
W1,1P → P is a G1

m � g ⊗ R
m-principal bundle,G1

m � g ⊗ R
m being the kernel of

W1
mG → G. The following lemma recognizesτP : TP → P as a vector bundle associated

with the principal bundleW1,1P → P .

Lemma 5.8. The vector bundleτP : TP → P coincides with the vector bundleT 1,1P :=
(W1,1P ×V)/(G1

m �g⊗R
m) over P, whereV := R

m⊕g is the leftG1
m �g⊗R

m-manifold
with action given by

τ : G1
m � g⊗ R

m × V→ V, τ : ((αjk, e, a
r
l ), (ν

i, vp)) �→ (αijν
j, vp + a

p
i ν

i).

(5.4)

Remark 5.9. The vector bundleτP : TP → P is a gauge-natural bundle of order(0,0)
associated with theG1

m � g⊗ R
m-principal bundle pr2 : W1,1P → P .

Lemma 5.10. VP → P is a trivial vector bundle associated withW1,1P → P .
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Lemma 5.11. LetP(M,G) be a reductive G-structure on a principal bundleQ(M,H) and
iP : P → Q the canonical embedding. Then, i∗P(TQ) = P ×Q TQ is a vector bundle over
P associated withW1,1P → P .

From the above lemmas it follows that another important example of a split structure on
a principal bundle is given by the following theorem.

Theorem 5.12. LetP(M,G)be a reductive G-structure on a principal bundleQ(M,H)and
let iP : P → Q be the canonical embedding. Then, there exists a canonical decomposition
of i∗P(TQ) → P such that

i∗P(TQ) = TP⊕M(P),

i.e. at eachu ∈ P one has

TuQ = TuP ⊕Mu,

Mu being the fibre over u of the subbundleM(P) → P of i∗P(VQ) → P . The bundle
M(P) is defined asM(P) := (W1,1P ×m)/(G1

m � g⊗ R
m), wherem is the(trivial left)

G1
m � g⊗ R

m-manifold.

Remark 5.13. The trivial G1
m � g ⊗ R

m-manifoldm corresponds to the action(4.5) of
Example 4.12with W1,1

m G restricted toG1
m � g ⊗ R

m, andg restricted tom. Of course,
since the groupG1

m � g ⊗ R
m acts trivially onm, it follows thatM(P) is trivial, i.e.

isomorphic toP ×m, becauseW1,1P/(G1
m � g⊗ R

m) ∼= P .

From the above theorem two corollaries follow, which are of prime importance for the
concepts of a Lie derivative we shall introduce in the next section.

Corollary 5.14. LetP(M,G) andQ(M,H) be as in the previous theorem. The restriction
Ξ|P of an H-invariant vector fieldΞ on Q to P splits into a G-invariant vector fieldΞK
on P, called thegeneralized Kosmann vector field associated withΞ, and a “transverse”
vector fieldΞG, called thegeneralized von Göden vector field associated withΞ.

Corollary 5.15. Let P(M,G) be a classical G-structure, i.e. a reductive G-structure on
the bundle LM of linear frames over M. The restrictionLξ|P to P → M of the natural lift
Lξ onto LM of a vector fieldξ on M splits into a G-invariant vector field on P called the
generalized Kosmann lift ofξ and denoted simply byξK, and a “transverse” vector field
called thevon Göden lift ofξ and denoted byξG.

Remark 5.16. The last corollary still holds if, instead ofLM, one considers thekth order
frame bundleLkM and hence a classicalG-structure of orderk, i.e. a reductiveG-subbundle
P of LkM. Note also that the Kosmann liftξ �→ ξK is not a Lie algebra homomorphism,
althoughξK is aG-invariant vector field and projects overξ.

Example 5.17 (Kosmann lift). A fundamental example of aG-structure on a manifoldM is
given, of course, by the bundle SO(M, g) of its (pseudo-) orthonormal frames with respect
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to a metricg of signature(p, q), wherep + q = m ≡ dimM. SO(M, g) is a principal
bundle (overM) with structure groupG = SO(p, q). Now, recall that the natural lift of a
vector fieldξ ontoLM is defined as

Lξ := ∂

∂t
L1ϕt

∣∣∣∣
t=0

,

{ϕt} denoting the flow ofξ. If (ρba) denotes a (local) basis of right GL(m,R)-invariant vector
fields onLM reading(ρba = ubc∂/∂u

a
c) in some local chart(xµ, uba) and(ea =: eµa ∂µ) is a

local section ofLM, thenLξ has the local expression

Lξ = ξaea + (Lξ)abρ
b
a,

whereξ =: ξaea and

(Lξ)ab := ẽaρ(∂νξ
ρeνb − ξν∂νe

ρ
b).

If we now let (ea) and (xµ, uba) denote a local section and a local chart of SO(M, g),
respectively, then the generalized Kosmann liftξK on SO(M, g) of a vector fieldξ onM,
simply called itsKosmann lift[7], locally reads

ξK = ξaea + (Lξ)[ab]A
ab,

where(Aab) is a basis of right SO(q, p)-invariant vector fields on SO(M, g) locally reading
(Aab = ηc[aδ

b]
d ρ

d
c ), (Lξ)ab := ηac(Lξ)

c
b, and(ηac) denote the components of the standard

Minkowski metric of signature(p, q).

Now, combiningProposition 3.10andTheorem 5.12yields the following result, which,
in particular, will enable us to extend the concept of a Kosmann lift to the important context
of spinor fields.

Corollary 5.18. Let ζ : P̃ → P be aΓ -structure over a classical G-structureP(M,G).
Then, the generalized Kosmann liftξK of a vector fieldξ on M lifts to a unique(Γ -invariant)
vector fieldξ̃K on P̃ , which projects overξK.

6. Lie derivatives on reductive G-structures

As already mentioned inSection 1, the general theory of Lie derivatives stems from
Trautman’s seminal paper[27]. Here, we mainly follow the notation and conventions of
[20, Section 47].

Definition 6.1. LetM andN be two manifolds andf : M → N a map between them. By a
vector field along fwe shall mean a mapZ : M → TNsuch thatτN ◦Z = f , τN : TN → N

denoting the canonical tangent bundle projection.
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Definition 6.2. Let M, N andf be as above, and letX andY be two vector fields onM
andN, respectively. Then, by thegeneralized Lie derivativẽ£(X,Y)f of f with respect toX
andY we shall mean the vector field alongf given by

£̃(X,Y)f := Tf ◦ X − Y ◦ f.

If {ϕt} and{Φt} denote the flows ofX andY , respectively, then one readily verifies that

£̃(X,Y)f = ∂

∂t
(Φ−t ◦ f ◦ ϕt)

∣∣∣∣
t=0

.

An important specialization ofDefinition 6.2is the following

Definition 6.3. Let π : B → M be a fibred manifold,σ : M → B a section ofπ, and
Ξ a projectable vector field onB over a vector fieldξ onM. Then, by thegeneralized Lie
derivative£̃Ξσ of σ with respect toΞ we shall mean the map

£̃Ξσ := £̃(ξ,Ξ)σ : M → VB. (6.1)

(It is easy to realize that̃£Ξσ ≡ Tσ ◦ ξ−Ξ ◦σ takes indeed values in the vertical tangent
bundle simply by applyingTπ to it and remembering thatΞ is projectable.)

Now recall that a fibred manifoldπ : B → M admits avertical splittingif there exists
a linear bundle isomorphism (covering the identity ofB) α : VB → B ×M B̄, whereπ̄ :
B̄ → M is a vector bundle. In particular, a vector bundleπ : B → M admits acanonical
vertical splittingα : VB → B ×M B. Indeed, ifτB : TB → B denotes the (canonical)
tangent bundle projection restricted toVB, y is a point inB such thaty = τB(v) for a given
v ∈ VB, andγ : R → By ≡ π−1(π(y)) is a curve such thatγ(0) = y andj1

0γ = v, thenα
is given byα(v) := (y,w), wherew := lim t→0(γ(t) − γ(0))/t.

Proposition 6.4. In this case, the generalized Lie derivativẽ£Ξσ is of the form

£̃Ξσ = (σ,£Ξσ), (6.2)

the first component being the original sectionσ. The second component£Ξσ is a section
of B̄, called theLie derivative ofσ with respect toΞ. For the sake of clarity, the operator
£ will be occasionally referred to as the restricted Lie derivative[20, Section 47].

Remark 6.5. In this case, on using the fact that £Ξσ is the derivative ofΦ−t ◦ σ ◦ ϕt at
t = 0 in the classical sense, one can re-express the restricted Lie derivative in the form

£Ξσ(x) = lim
t→0

1

t
(Φ−t ◦ σ ◦ ϕt(x) − σ(x)). (6.3)

Proposition 6.4also works wheneverB is anaffinebundle. This is so because, also in this
case,π : B → M admits a canonical vertical decompositionα : VB → B ×M B̄, where
π̄ : B̄ → M is the vector bundle associated withB.

Now, we can specializeDefinition 6.3to the case of gauge-natural bundles in a straight-
forward manner.
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Definition 6.6. Let Pλ be a gauge-natural bundle associated with some principal bundle
P(M,G), Ξ a G-invariant vector field onP projecting over a vector fieldξ on M, and
σ : M → Pλ a section ofPλ. Then, by thegeneralized(gauge-natural) Lie derivative ofσ
with respect toΞ we shall mean the map

£̃Ξσ : M → VPλ, £̃Ξσ := Tσ ◦ ξ − Ξλ ◦ σ, (6.4)

whereΞλ is the generator of the 1-parameter group{(Φt)λ} of automorphisms ofPλ func-
torially induced by the flow{Φt} of Ξ [cf. (4.3)]. Equivalently,

£̃Ξσ = ∂

∂t
((Φ−t)λ ◦ σ ◦ ϕt)

∣∣∣∣
t=0

, (6.4′)

{ϕt} denoting the flow ofξ.

As usual, wheneverπ : Pλ → M admits a canonical vertical splitting ofVPλ, we shall
write £Ξσ : M → P̄λ := Pλ for the corresponding restricted Lie derivative.

Furthermore, for eachΓ -structureζ : P̃ → P onP , we shall simply write £Ξσ̃ := £Ξ̃σ̃ :

M → ¯̃
Pλ̃, P̃λ̃ denoting a gauge-natural bundle associated withP̃ (admitting a canonical

vertical splitting) and̃σ : M → P̃λ̃ one of its sections, sinceΞ admits a unique (Γ -invariant)
lift Ξ̃ ontoP̃ (cf. Proposition 3.10). We stress thatDefinition 6.6is the conceptually natural
generalization of the classical notion of a Lie derivative[30], to which it suitably reduces
when applied to natural objects and, hence, notably, to tensor fields and tensor densities.

Of course, we can now further specialize to the case of classicalG-structures and, in
particular, give the following definition.

Definition 6.7. LetPλ be a gauge-natural bundle associated with some classicalG-structure
P(M,G), ξK the generalized Kosmann lift (onP) of a vector fieldξ onM, andσ : M → Pλ

a section ofPλ. Then, by thegeneralized Lie derivativẽ£ξσ of σ with respect toξ we shall
mean the map̃£ξσ := £̃ξKσ, where£̃ξKσ denotes the generalized Lie derivative ofσ with
respect toξK in the sense ofDefinition 6.6.

Consistently, we shall simply write £ξσ := £ξKσ : M → P̄λ for the corresponding

restricted Lie derivative, whenever defined, and £ξσ̃ := £
ξ̃K
σ̃ : M → ¯̃

Pλ̃ for the (restricted)

Lie derivative of a sectionσ of a gauge-natural bundlẽPλ̃ associated with some principal
prolongation of aΓ -structureζ : P̃ → P (and admitting a canonical vertical splitting),
which makes sense sinceξK admits a unique (Γ -invariant) lift ξ̃K ontoP̃ (cf.Corollary 5.18).

Example 6.8 (Lie derivative of spinor fields. I). InExample 5.17we mentioned that a
fundamental example of aG-structure on a manifoldM is given by the bundle SO(M, g)

of its (pseudo-) orthonormal frames. An equally fundamental example of aΓ -structure
on SO(M, g) is given by the corresponding spin bundle Spin(M, g) with structure group
Γ = Spin(p, q). Now, it is obvious that spinor fields can be regarded as sections of a
suitable gauge-natural bundle overM. Indeed, ifλ is the linear representation of Spin(p, q)

on the vector spaceCm induced by a given choice ofγ matrices, then the associated vector
bundleS(M) := Spin(M, g)×λC

m is a gauge-natural bundle of order(0,0)whose sections
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represent spinor fields (or, more precisely, spin-vector fields). Therefore, in spite of what
is sometimes believed, a Lie derivative of spinors (in the sense ofDefinition 6.6) always
exists,no matter whatthe vector fieldξ onM is. Locally, such a Lie derivative reads

£Ξψ = ξaeaψ + 1
4Ξabγ

aγbψ

for any spinor fieldψ, (Ξab = Ξ[ab]) denoting the components of an SO(p, q)-invariant
vector fieldΞ = ξaea + ΞabA

ab on SO(M, g), ξ =: ξaea, andeaψ the Pfaff derivative
of ψ along the local section(ea =: eµa ∂µ) of SO(M, g) induced by some local section of
Spin(M, g). This is the most general notion of a (gauge-natural) Lie derivative of spinor
fields and the appropriate one for most situations of physical interest (cf.[12,25]): the
generality ofΞ might be disturbing, but is theunavoidableindication thatS(M) is not a
natural bundle. If we wish nonetheless to remove such a generality, we mustchoosesome
canonical (not natural) lift of ξ onto SO(M, g). The conceptually (not mathematically)
most “natural” choice is perhaps given by the Kosmann lift (recall Example 5.17 and use
Corollary 5.18). The ensuing Lie derivative locally reads

£ξψ = ξaeaψ + 1
4(Lξ)[ab]γ

aγbψ. (6.5)

Of course, if ‘∇ ’ denotes the covariant derivative operator associated with the Levi-Civita
(or Riemannian) connection with respect tog, the previous expression can be recast into
the form

£ξψ = ξa∇aψ − 1
4∇[aξb]γ

aγbψ, (6.5′)

which reproduces exactly Kosmann’s definition[22] (see[7] for further details and a more
thorough discussion). We stress that, althoughin this caseits local expression would be
identical with(6.5), this isnot the “metric Lie derivative” introduced by Bourguignon and
Gauduchon in[2]. To convince oneself of this it is enough to take the Lie derivative of the
metricg, which is a section of thenaturalbundle

∨2
T ∗M, ‘

∨
’ denoting the symmetrized

tensor product. Since the (restricted) Lie derivative £ξ in the sense ofDefinition 6.7must
reduce to the ordinary one on natural objects, it holds that

£Lξg = £ξg.

On the other hand, if £ξ coincided with the operator £gξ defined by Bourguignon and Gaudu-
chon, the right-hand side of the above identity should equal zero[2, Proposition 15], thereby
implying thatξ is a Killing vector field, contrary to the fact thatξ is completely arbitrary.
Indeed, in order to recover Bourguignon and Gauduchon’s definition, another concept of a
Lie derivative must be introduced.

We shall start by recalling two classical definitions[17].

Definition 6.9. LetP(M,G) be a (classical)G-structure. Letϕ be a diffeomorphism ofM
onto itself andL1ϕ its natural lift ontoLM. If L1ϕ mapsP onto itself, i.e. ifL1ϕ(P) ⊆ P ,
thenϕ is called anautomorphismof theG-structureP .



82 M. Godina, P. Matteucci / Journal of Geometry and Physics 47 (2003) 66–86

Definition 6.10. Let P(M,G) be aG-structure. A vector fieldξ on M is called anin-
finitesimal automorphismof theG-structureP if it generates a local 1-parameter group of
automorphisms ofP .

We can now generalize these concepts to the framework of reductiveG-structures as
follows.

Definition 6.11. Let P(M,G) be a reductiveG-structure on a principal bundleQ(M,H)

andΦ a principal automorphism ofQ. If Φ mapsP onto itself, i.e. ifΦ(P) ⊆ P , thenΦ is
called ageneralized automorphismof the reductiveG-structureP .

Of course, each element of Aut(P), i.e. each principal automorphism ofP , is by definition
a generalized automorphism of the reductiveG-structureP . Analogously, we have the
following definition.

Definition 6.12. Let P(M,G) be a reductiveG-structure on a principal bundleQ(M,H).
An H-invariant vector fieldΞ on Q is called ageneralized infinitesimal automorphism
of the reductiveG-structureP if it generates a local 1-parameter group of generalized
automorphisms ofP .

Of course, each element ofXG(P), i.e. eachG-invariant vector field onP , is by definition
a generalized infinitesimal automorphism of the reductiveG-structureP .

Now, along the lines of[19, Proposition X.1.1]it is easy to prove the following

Proposition 6.13. LetP(M,G) be a reductive G-structure on a principal bundleQ(M,H).
An H-invariant vector fieldΞ on Q is a generalized infinitesimal automorphism of the
reductive G-structure P if and only ifΞ is tangent to P at each point of P.

We then have the following important lemma.

Lemma 6.14. LetP(M,G) be a reductive G-structure on a principal bundleQ(M,H) and
Ξ a generalized infinitesimal automorphism of the reductive G-structure P. Then, the flow
{Φt} ofΞ, it being H-invariant, induces on each gauge-natural bundleQλ associated with
Q a1-parameter group{(Φt)λ} of global automorphisms.

Proof. SinceΞ is by assumption a generalized infinitesimal automorphism, it is by defi-
nition anH-invariant vector field onQ. Therefore, its flow{Φt} is a 1-parameter group of
H-equivariant maps on the subsetP of Q. Then, ifQλ = Wk,hQ ×λ F , we set

(Φt)λ([u, f ]λ) := [Wk,hΦt(u), f ]λ,

u ∈ Q, f ∈ F , and are back to the situation of formula(4.3). �

Corollary 6.15. LetP(M,G) andQ(M,H) be as in the previous lemma, and letΞ be an
H-invariant vector field on Q. Then, the flow{(ΦK)t} of the generalized Kosmann vector
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fieldΞK associated withΞ induces on each gauge-natural bundleQλ associated with Q a
1-parameter group{((ΦK)t)λ} of global automorphisms.

Proof. Recall that, although the generalized Kosmann vector fieldΞK is a G-invariant
vector field onP , it is H-invariant if regarded as a vector field on the corresponding subset
of Q (cf. Remark 5.7andCorollary 5.15). Therefore, its flow{(ΦK)t} is a 1-parameter
group ofH-equivariant automorphisms on the subsetP of Q.

We now want to define a 1-parameter group of automorphisms{((ΦK)t)λ} of Qλ =
Wk,hQ ×λ F . Let [u, f ]λ ∈ Qλ, u ∈ Q andf ∈ F , and letu1 be a point inP such
thatπ(u1) = π(u), π : Q → M denoting the canonical projection. There exists a unique
a1 ∈ H such thatu = u1 · a1. Set then

((ΦK)t)λ([u, f ]λ) := [Wk,h(ΦK)t(u1), a1f ]λ.

We must show that, given another pointu2 ∈ P such thatu = u2 · a2 for some (unique)
a2 ∈ H , we have

[Wk,h(ΦK)t(u1), a1f ]λ = [Wk,h(ΦK)t(u2), a2f ]λ.

Indeed, since the action ofH is free and transitive on the fibres, fromu = u1 · a1 and
u = u2 · a2 it follows thata1 = a · a2 or a = a1 · (a2)

−1 or a2 = a−1 · a1. But then

[Wk,h(ΦK)t(u2), a2f ]λ = [Wk,h(ΦK)t(u1 · a), a−1 · a1f ]λ

= [Wk,h(ΦK)t(u1) � Wk,h
m a, a−1 · a1f ]λ

= [Wk,h(ΦK)t(u1), a1f ]λ

as claimed. It is then easy to see that the so-defined((ΦK)t)λ does not depend on the chosen
representative. �

By virtue of the previous corollary, we can now give the following definition.

Definition 6.16. Let P(M,G) be a reductiveG-structure on a principal bundleQ(M,H),
G �= {e}, andΞ anH-invariant vector field onQ projecting over a vector fieldξ onM. Let
Qλ be a gauge-natural bundle associated withQ andσ : M → Qλ a section ofQλ. Then,
by thegeneralized G-reductive Lie derivative ofσ with respect toΞ we shall mean the map

£̃GΞσ := ∂

∂t
(((ΦK)−t)λ ◦ σ ◦ ϕt)

∣∣∣∣
t=0

,

{ϕt} denoting the flow ofξ.

The corresponding notions of a restricted Lie derivative and a (generalized or restricted)
Lie derivative on an associatedΓ -structure can be defined in the usual way.

Remark 6.17. WhenQ = P (andH = G), ΞK is justΞ, and we recover the notion of a
(generalized) Lie derivative in the sense ofDefinition 6.6, but, asG is required not to equal
the trivial group{e}, Qλ is never allowed to be a (purely) natural bundle.
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By its very definition, the (restricted)G-reductive Lie derivative doesnot reduce, in
general, to the ordinary (natural) Lie derivative on fibre bundles associated withLkM. This
fact makes it unsuitable in all those situations where one needs auniqueoperator which
reproduce “standard results” when applied to “standard objects”.

In other words, £GΞ is defined with respect to somepre-assigned(generalized) symme-
tries. We shall make this statement explicit inProposition 6.19below, which provides a
generalization of a well-known classical result.

Let thenK be a tensor over the vector spaceR
m (i.e. an element of the tensor algebra over

R
m) andG the group of linear transformations ofR

m leavingK invariant. Recall that each
reduction of the structure group GL(m,R) toG gives rise to a tensor fieldK onM. Indeed,
we may regard eachu ∈ LM as a linear isomorphism ofR

m ontoTxM, wherex = π(u) and
π : LM → M denotes, as usual, the canonical projection. Now, ifP(M,G) is aG-structure,
at each pointx of M we can choose a frameu belonging toP such thatπ(u) = x. Sinceu
is a linear isomorphism ofRm onto the tangent spaceTxM, it induces an isomorphism of
the tensor algebra overR

m onto the tensor algebra overTxM. ThenKx is the image ofK
under this isomorphism. The invariance ofK by G implies thatKx is defined independent
of the choice ofu in π−1(x). Then, we have the following classical result[17].

Proposition 6.18. Let K be a tensor over the vector spaceR
m and G the group of linear

transformations ofRm leavingK invariant. Let P be a G-structure on M and K the tensor
field on M defined byK and P. Then

1. a diffeomorphismϕ : M → M is an automorphism of the G-structure P iffϕ leaves K
invariant;

2. a vector fieldξ on M is an infinitesimal automorphism of P iff£LξK = 0.

Now, we can use the concept of aG-reductive Lie derivative to state an analogous result
for generalized automorphisms ofP .

Proposition 6.19. In the same hypotheses of the previous proposition,

1. an automorphismΦ : LM → LM is a generalized automorphism of the G-structure P
iff Φ leaves K invariant;

2. aGL(m,R)-invariant vector fieldΞ on LM is an infinitesimal generalized automorphism
of P iff £GΞK = 0.

Note that the Lie derivative £GΞK is well-defined sinceK is a tensor field onM and
therefore a section of a vector bundle associated withW0,0(LM) ∼= LM. Here,Q = LM
andH = GL(m,R). Nevertheless, consistently with what we said previously,K has to
be regarded here as a section of agauge-natural, not simply natural, bundle overM (cf.
Example 4.10). The choiceP = Q = LM, G = H = GL(m,R) andΞK = Ξ = Lξ

reproduces Kobayashi’s classical result.

Corollary 6.20. Let Ξ be a generalized infinitesimal automorphism ofSO(M, g). Then,
£SO(p,q)
Ξ g = 0.
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The last corollary suggests that Bourguignon and Gauduchon’s metric Lie derivative
might be a particular instance of a reductive Lie derivative. This is precisely the case, as
explained in the following fundamental example.

Example 6.21 (Lie derivative of spinor fields. II). We know that the Kosmann liftξK onto
SO(M, g) of a vector fieldξ onM is an SO(p, q)-invariant vector field on SO(M, g), and
hence its liftξ̃K onto Spin(M, g) is a Spin(p, q)-invariant vector field. As the spinor bundle
S(M) is a vector bundle associated with Spin(M, g), the SO(p, q)-reductive Lie derivative
£SO(p,q)
ξK

ψ of a spinor fieldψ coincides with £ξψ, i.e. locally with expression(6.5)or (6.5′).
Indeed, in this case we have, with an obvious notation,Q = P = SO(M, g), H = G =
SO(M, g), Q̃ = Spin(M, g) andQ̃λ̃ = S(M).

For £SO(p,q)
ξK

g a similar remark to the one above for £G
ΞK applies and therefore, ifg =

gµν dxµ ∨ dxν in some natural chart, we have the local expression

£SO(p,q)
ξK

gµν ≡ ξρ∂ρgµν + 2gρ(µ(ξK)
ρ
ν)

≡ ξρ∂ρgµν+gρ(µ∂ν)ξ
ρ−δ

ρ
(µgν)σ∂ρξ

σ−ξρδσ(µ|∂ρg|ν)σ ≡ 0≡ £SO(p,q)
Ξ gµν

quite different from the usual (natural) Lie derivative

£Lξgµν ≡ ξρ∂ρgµν + 2gρ(µ(Lξ)
ρ
ν) ≡ ξρ∂ρgµν + 2gρ(µ∂ν)ξ

ρ

≡ 2∇(µξν) ≡ £ξgµν ≡ £Ξgµν.

7. Discussion

In this paper we have investigated the hoary problem of the Lie derivative of spinor fields
from a very general point of view, following a functorial approach. We have done so by
relying on three nice geometric constructions: split structures, gauge-natural bundles and
the general theory of Lie derivatives.

Such analysis has shown that, although for (purely) natural objects over a manifoldM

there is a conceptually and mathematically natural definition of a Lie derivative with respect
to a vector field onM, there is no such thing for more general gauge-natural objects, the
vector field onM being necessarily replaced by aG-invariant vector field on some principal
bundleP(M,G).

Conceptually speaking, though, there are at least two obvious definitions of a Lie deriva-
tive of spinor fields, both relying on a canonical, not natural, lift of a vector field onM onto
the bundle of its orthonormal frames, the so-called “Kosmann lift”. Both definitions are ge-
ometrically well-defined and have their own range of applicability, but, in general, only the
gauge-natural one reduces to the standard definition of a Lie derivative on natural objects.
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